# OSE 4721 Biophotonics

| Days & Times         | Room      | Instructor       | Meeting Dates           |
|----------------------|-----------|------------------|-------------------------|
| TuTh 4:30PM - 5:45PM | CROL 0102 | Aristide Dogariu | 08/24/2015 - 12/15/2015 |

The course addresses basic topics and current trends in the use of light in medical sciences. Students will develop an understanding of:

- light-matter interactions, optical imaging, optical technology and metrology
- opportunities for optics and photonics in biomedicine

The course will involve critical reading and current research evaluation. The course is open to non-majors; programming experience (Matlab) preferable

Key topics include a review of relevant optical principles (basic physics required) and phenomena related to light-tissue interaction. Other topics will cover aspects of optical sensing and spectroscopy, super-resolution and label-free microscopy as well as an assessment of medical applications of light for diagnostics, in-vivo imaging, and therapy

## Detailed list of topics

- 1. Overview of Biophotonics
- 2. Fundamentals of light-matter interaction (2weeks)
  - Nature of light
  - Geometrical optics
  - Wave optics, diffraction and interference
  - Radiometry
  - Polarization and coherence
- 3. Tissue Optics (2weeks)
  - length scales
  - optical properties; index of refraction, reflection, absorption
  - scattering; Rayleigh, Mie scattering
  - fluorescence
- 4. Optical imaging and microscopy (6weeks)
  - Image formation
  - Contrast mechanisms
  - Microscopy and instrumentation
  - Scanning and localization microscopy
  - Optical coherence tomography
  - Diffuse optical tomography
  - Photoacoustic tomography
- 5. Optical sensing and manipulation (4weeks)
  - Basic principles of spectroscopy and instrumentation
    - Nanotechnology; nanophotonics and array technologies.
    - Flow cytometry
    - Laser tweezers

### Recommended texts (but not absolutely required)

- Biomedical optics, Principles and Imaging, L. V. Wang and Hsin-I Wu, Wiley-Interscience
- Introduction to Biophotonics, Paras Prasad, Wiley-Interscience

## Other useful reading

- Optics, E. Hecht, Addison-Wesley
- Fundamentals of Photonics, B. Saleh, Wiley-Interscience
- Biomedical Photonics Handbook, T. Vo-Dinh ed., CRC Press

Requirements for class attendance and make-up exams, assignments, and other work are consistent with university policies.

#### Grading

- 35% Homework (6 email based assignments)
- 15% Assigned project and presentation
- 20% Midterm exam
- 30% Final exams