OSE 4952: Senior Design II

COURSE SYLLABUS

Instructor: Dr. Patrick LiKamWa
Office: CREOL A211
Phone: 407-823-3816
E-Mail: patrick@creol.ucf.edu

Office Hours: Wednesdays: 12:30 PM – 2:30 PM, and by appointment

Term: Summer 2016
Class Meeting Days: Tuesdays and Thursdays
Class Meeting Time: 8:00 AM - 9:50 AM
Class Location: BA2 0208

I. University Course Catalog Description

Execution of electrical and computer engineering project including complete project design review, construction, testing and demonstration. Emphasis on design, prototyping, cost, functionality, presentation, team effort and final report.

II. Course logistics

Owing to the interdisciplinary nature of this course, all students enrolled in OSE4952 will actually be attending the lectures for EEL 4915L currently being taught by Professor Lei Wei.

Therefore the syllabus for EEL 4915L applies for OSE 4952 and all grade assignments and class policies (without exceptions) for EEL 4915L are exactly applicable to OSE 4952. It is imperative that students make themselves known to the above professors. The syllabus for EEL 4915L is attached.
University of Central Florida
Department of Electrical Engineering & Computer Science

EEL 4915L
Summer 2016

Senior Design II

Dr. Lei Wei
UCF, HEC 432
V:407-823-5098
e-mail: lei@ucf.edu

Class Time: TR 8:00-9:50 AM

Texts:
1. DESIGN FOR ELECTRICAL AND COMPUTER ENGINEERS, McGraw-Hill
2. SENIOR DESIGN FOR ELECTRICAL AND COMPUTER ENGINEERS STUDENTS,
Pearson Custom Publishing

Software:
Varies by Project, Circuit Simulation Software, Schematic Capture Software,
PCB Software

Catalog: PR: EEE 3307C, EEL 4742C, and consent of Department of EECS. Applications of engineering
design to realistic and meaningful problems. Constraints such as economic factors, safety, reliability,
aesthetics, ethics, social impact and engineering organizations are considered.

Resources:
Internet based, Library, and faculty, mentor, or peer consultations

Credits:
3 hours total, 3 hours lecture and 0 hours laboratory

Computer Usage: This course requires the use of simulation, schematic capture and PCB layout software.

Attendance in class is required. Assignments are due when collected by the instructor. All or only a part
of the collected homework may be graded. All exams are mandatory. The final grade will be based on
your performance on attendance, exam performance, presentation performance, and final project
documentation. In addition failure to comply with course requirements or expectations may result in the
lower grade as determined to be appropriate by the instructor.

Any act of academic dishonesty or unprofessional behavior will result in a failing grade on an exam or in
the course.

Beginning in Fall 2014, all faculty are required to document students’ academic activity at the beginning
of each course. In order to document that you began this course, please complete the following
academic activity by the end of the first week of classes or as soon as possible after adding the course,
but no later than August 27th. Failure to do so may result in a delay in the disbursement of your financial
aid. The assignment to satisfy this requirement is for all students to submit a written description of an
idea for a senior design project on or before 12:00 PM (noon) on Friday 1/16.
EEL 4915L - Preliminary Course Information

The EEL 4914C and EEL 4915L - Senior Design courses are intended to serve as capstone courses for the Electrical and Computer Engineering Bachelor of Science Degree. These courses provide the opportunity to practice the engineering skills which you have accumulated to date and to learn certain concepts in engineering practice. In EEL 4914C skills and issues in engineering design are discussed. Specifically, topics of the course lecture include the history of engineering education, engineering as a profession, engineering management, realistic design constraints, standards based design, engineering research, engineering ethical responsibility, and engineering economics. Contemporary issues are integrated into content lectures and serve as case studies. An engineering design project is jointly agreed upon by the instructor and a student team. This project must incorporate sufficient open ended design content such that the students demonstrate the ability to identify, formulate, and solve engineering problems. The student team studies the problem, develops design alternatives and selects an approach which can be implemented. The design prototype is then completed in EEL 4915L by performing the necessary parts acquisition, hardware and software realization, and debugging. During the two semesters students prepare written documentation and make group presentations as part of demonstration of their ability to communicate effectively. Students will develop the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context. Once completed the students present the project design and prototype to a faculty review committee for evaluation.

These courses subject the students to an environment unlike the majority of their previous curriculum. Aspects of engineering design not found in classroom academic discussions are encountered. The need to assign responsibilities to team members and to rely on other individuals to perform necessary work for successful completion of team goals is encountered. These and other aspects of team member interactions are often cited as a valuable course experience.

The requirement to succeed to the point of a functioning prototype implies the need to go beyond the circuit prototyping experiences which are common to previous electronics laboratories. The skills necessary for soldering, printed circuit board manufacturing, and wire wrapping are just a few of the prototyping needs which are encountered. These skills along with the knowledge required for efficient component identification and acquisition are learned as a necessity for successful design completion.

This course document provides many of the details of the Senior Electrical Design course requirements and course format.
Catalog Data
EEL 4915L Senior Design II 3(3,0): Applications of engineering design to realistic and meaningful problems.

Objectives
To provide students a complete design experience, including the necessity to set design goals and objectives, integrate knowledge, exercise engineering judgement, plan to meet a budget and a schedule, to work as a team member, and to communicate in writing.

Outcomes
This class is a required course for electrical and computer engineering students and serves as the first part of the capstone design course sequence for all BSEE and BSCpE students. The course goals are to enable students to:
- Give effective technical presentations
- Demonstrate knowledge of engineering science, design, and teamwork
- Demonstrate effective verbal and written communications
- Knowledge of realistic design constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- Knowledge of standards based design practices
- Knowledge of Product Life Cycles, Research and Development, and Intellectual Property
- Knowledge of Engineering Economics
- Fundamental of Engineering Ethics
- Knowledge of the Engineering Design Process, Engineering Teamwork and Project Documentation

Topics
- Introduction
- Realistic Design Constraints
- Standards Based Design Practices
- Effective technical presentations
- Critical design review
- Midterm project demonstration and evaluation
- Preparation of project conference paper
- Project presentation to faculty review committee
- Project final written documentation
- Project website development

Textbook
1. DESIGN FOR ELECTRICAL AND COMPUTER ENGINEERS, McGraw-Hill
2. SENIOR DESIGN FOR ELECTRICAL AND COMPUTER ENGINEERING STUDENTS, Pearson Custom Publishing

References
Depends upon the group’s project. Consultation with appropriate faculty and professionals is encouraged. Consider all your sources for information.

Course Content
Engineering Science: 0 credit hours (0%)
Engineering Design: 3 credit hours (100%)

Homework
Special assignments as appropriate will be made.
There will be no specific computer assignments. However, word processing is required for all documentation. Most projects will utilize computer simulation during the design, while other projects may be based on embedded control, the use of a personal computer, or single board computer applications where software and/or hardware development will be required.

There will be one exam. The exam must be complete at 90% or a deduction of one letter grade will occur in the student’s final grade.

The Department of Electrical Engineering and Computer Science will not provide project parts beyond what is available in school laboratories. The cost of the project may be exclusively yours, exclusively your sponsor’s, or may be shared. The most common case is that the project is funded by the student group or by a sponsoring group, agency, or corporation.

NOTE: If project expenses are paid in part or in whole by the EECS Dept., then the project becomes the property of the school and it must remain at UCF.

The required final documentation consists of a formal technical document consisting of research, design, theory of operation, construction and testing.

No formal laboratory work is required. However, virtually all projects require hardware prototyping which will include construction and testing. Laboratory space and facilities will be available for this purpose.

In order to protect project installations, only students that are registered in the class will be allowed in the lab. You can work in the laboratory during non-business hours and on weekends by using your college keycards, and if needed requesting entry to the engineering building from the UCF Police Department. Identification will be required. Due to the policy stated below, the police will not provide entry to a single student. A minimum of two students are required when working in the laboratory.

University policy requires that for safety reasons, at least two people must be present in the laboratory premises at any time. Violators will be asked to leave the laboratory premises. Since it is not possible to police this policy at all times, violators will be working entirely at their own risk.

During the course of the two semester each group will make at least two presentations to the rest of the class during normal lecture or laboratory hours. This will serve as a critical design review for your project. The schedule for these presentations will be set just prior to this time.

Consulting on each project will be available either from the course instructor or from any other ECE Department faculty member who has expertise on the subject of your project. Appointments should be for consultation times.
Grading

Exam
Critical Design Review
Final Project Presentation
Final Documentation
Group Peer Evaluation
Attendance

All elements, with the exception of the final document in EEL4915L, are treated as content in which the student must demonstrate mastery of the material. No grades are assigned, only indications of completion are recorded. If a student fails to demonstrate competency on an assignment, the assignment must be repeating until mastered. All required elements of the course must be mastered in order to receive a passing final grade. All course elements are evaluated by the course instructor. Usually all team members are awarded the same grade, however under certain circumstances team members may receive different grades. In cases where group members do not adequately contribute to the project, members may be dropped from the group and those students will receive a grade of F for the course.

Important Warning

The grading in the EEL4915 course requires that your prototype work as specified. Failure to meet this requirement will result in a grade of F or I depending upon the circumstances as dictated by the course instructor.