Far Infrared and Terahertz Technology
—at the turning point of change!

Presented by:
Michael C. Dudzik
Vice President, Science & Technology
Washington Operations
Lockheed Martin Corporation
Agenda

- Scientific Change Happens!
- Translation for Far Infrared and Terahertz
- Insertion into Applications
- Near Term Pathway Going Forward
“Anyone who has never made a mistake has never tried anything new”

“Great Spirits have always encountered violent opposition from mediocre minds”
Span of Eras -- Merging Components and Systems

<table>
<thead>
<tr>
<th>YEAR</th>
<th>Electron Tubes</th>
<th>Stainless Steel</th>
<th>Plastic</th>
<th>Transistor</th>
<th>Composites</th>
<th>Nano Electronics</th>
<th>IC’s</th>
<th>Nano Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright 2011 Lockheed Martin Corporation All Rights Reserved
Terahertz and Far IR Era Change

First Half 20th Century

Analog

Moore’s Law

Metcalf’s Law

Terahertz & Far IR Sources /Detectors

YEAR

Copyright 2011 Lockheed Martin Corporation All Rights Reserved
The Three Horizons*

Building a healthy product Pipeline across all three horizons is the foundation for business growth.

Managing all three horizons is done concurrently.

Horizon 1 – The Core

Horizon 2 – Adjacent & Advanced Programs

Horizon 3 – Embryonic Business

Copyright McKinsey & Co
All Rights Reserved

* McKinsey & Co
“Translation Point” for Far Infrared and Terahertz

• “Black Swan” Paradigm in Optical Science
 – Unique Imaging Characteristics
• Significant R&D advances since 1960
 – New Sources (QCL, nano, plasmonics)
 – New Detectors
• TRL and MRL Support Translation & Applications
 – Extended Applications
 – Translation (scaling)
• Validation of “Success Models” for Cost/Performance Attributes that are dominant for Translation
 – Seeking the “Killer Apps”
Strategy: Define the Customer Value Proposition for New Products at Every Stage of Development
Systems Engineering Trades Impact the Terahertz Gap

Photo Source: NASA and US Army NVEOSD
LM Interests in Far Infrared and Terahertz

- Space Systems NDE efforts with NASA-Langley
 - LM Michoud -- Shuttle External Tank foam inspection problem
 - Picometrix T-Ray 2000 sensor
 - Foam Void/Crack detection

- Aircraft NDE/NDI Manufacturing and Maintenance
 - F-35 manufacturing process control
 - C-130 Supplier Composite/Radom inspection

- Component Waveguide Development
 - LANCER Program for THz Waveguide with Rice University
 - Transponder Efficiency Improvement

- “Killer App” constructs for Terahertz Technology
 - Exo-atmospheric Communication
 - Homeland Security Screening System
 - Robotic Sensors for Short Range Vision through Obscurants
Terahertz NDE of Shuttle Tank Foam

Void and Cracks Found within Foams and Non-Conducting Laminates

Photos Source: NASA
Terahertz Imaging Through Obscurants

Vehicle Driving Aids
>1-20 meter ranges

Helicopter Landing Aids
>10-25 meter standoff ranges

Imaging Applications for < 10dB/m attenuation
Terahertz NDI Imaging

Advanced Cargo Composite Aircraft

C-130 J Aircraft

Advanced Aircraft Materials Provides NDI Applications for Terahertz Imaging
Raster Imaging System*

- Scan X & Y one point at a time
- Collect T-Ray scan for each point
- Allows one to examine different features of the T-Ray signal
- Raster scanning works, but its slow

* Data/Photos courtesy of Picometrix
Objects imaged between two ¾”-thick foam inserts:
• Two allen wrenches
• #0-80 Socket cap screw in a pill bottle
• Seam on Ziploc bag

* Data/Photos courtesy of Picometrix
Analyze Variations in Amplitude

Almonds

* Data/Photo courtesy of Picometrix
Terahertz Exo-Atmospheric Communications

- Evaluate the feasibility of a T-Com system for use in space
- Compare notional performance to RF and Optical systems

Results:
- THZ Comm is Feasible but low TRL
- TRX Beam Divergence
 - 200 X> Laser Comm
 - 200X< RF(10GHz) Comm
- RCX
 - Hot Electron Bolometers (2-3Thx)
 - Bandwidths up to 5GHz demo

Conceptual Diagram/Picture
- >5 Gb/sec transceiver at 2.5 THz
- Potentially less SWAP than optical or RF solutions
- Optimal pointing tolerances
Terahertz Transceiver

Monolithic THz transceiver with QCL transmitter/LO and coherent diode-mixer receiver.

Near Term Challenges

• Development of validated high-resolution terahertz atmospheric absorption band models
 • Key Atmospheric Windows for Active and Passive Transmission
 • Effects of Moisture & Dust on transmission path needed

• More studies of phenomenology, signatures and systems
 • Exo-atmospheric Communication
 • Security Screening
 • Chemical Sensing
 • Medical Diagnostics & Sensing
 • Non-Destructive Testing/Manufacturing

• Components costs and maturity limit systems use
 • Large Optics
 • Limited Reliability of Thz Components compared to EO and Radar
“Killer Apps” for Terahertz?
Terahertz is under-leveraged in applications
Exploitation new phenomenology – in areas not adequately addressed by EO and Radar

LM has interest and use of Terahertz Technology & Systems

Where are the near-term Terahertz limitations?
Lack of workforce training/education and awareness
Material metrics limitations are cost, performance and reliability of components
New Components are emerging -- QCL, detectors & processing – more feasibility studies

Emerging New Applications in 4+ years
Brown out Sensing for UAS platform applications
Resonant Absorption Chemical/Biological Material Standoff Detection
Frequency agile Imaging Sensors (multi-transmission band phenomenology)
Short Range Communications or Exo-Atmospheric Communications

Terahertz is at the Turning Point of Change
LM Terahertz Contact Information

• Mr. Jeff Seebo Hampton, VA 757/864-5967
 • Space Shuttle Foam NDE

• Dr. Van Rudd Louisville, CO 303/379-3251
 • Phenomenology, THz Systems, Components, Measurements

• Dr. Carey Cates Palo Alto, CA 650/424-2801
 • Phenomenology, Detectors, Sources, Components