Damage mapping with a degrading elastic modulus using piezospectroscopic coatings

Gregory Freihofer a,*, Axel Schülzgen b, Seetha Raghavan a

a Mechanical and Aerospace Engineering Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA
b CREOL, The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA

A R T I C L E I N F O

Article history:
Received 24 March 2015
Received in revised form 12 July 2015
Accepted 13 July 2015
Available online 26 July 2015

Keywords:
Piezospectroscopy
Mechanical properties
Multiscale mechanics
Damage mechanics
Non-destructive evaluation

A B S T R A C T

The development of piezospectroscopic (PS) composites has enabled the creation of a non-destructive evaluation (NDE) technique which integrates piezospectroscopy, digital image correlation (DIC) and analytical multi-scale mechanics to map the elastic modulus of a coated material. The measured elastic modulus was represented as a normal distribution with a mean value (32.2 GPa) which is within 8% of the conventionally recorded modulus (35 GPa). Damage mechanics are applied to map elastic degradation in situ mechanical loading with an average uncertainty (~10 GPa) that was sufficient in observing subsurface, progressive damage patterns which are unique to the coated material.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Detecting damage with NDE is an important field for the diagnosis of structural health with applications ranging from aerospace [1] to civil [2] structures. Conventional NDE techniques are based on the identification of the size and location of defects. Techniques such as ultrasound [3], thermography [4], shearography [5], and others [6] are technologies that each have their own set of advantages in this regard.

An alternative way of monitoring damage is by quantifying the reduced mechanical properties. The presence of micro-voids or cracks creates a softening effect which decreases the elastic modulus of the continuum [7]. When compared to a variety of damage measures, monitoring the degrading elastic modulus is a promising technique [8]. The degraded elastic modulus can be captured experimentally with the slope of an unloading curve or predicted with a damage model. The major weakness is that it lacks the capacity to detect local damage because a measure of the elastic modulus is conventionally a nominal or macroscopic measure.

In laboratory settings, determining nominal mechanical properties is straightforward with a load cell, strain gage, and standard test specimens. However, evaluating local mechanical properties of a structure would require a combination of stress and strain mapping. Strain mapping is available with a few techniques including electronic speckle pattern interferometry [9], Moiré interferometry [10], and digital image correlation (DIC) [11]. Stress mapping with the same flexibilities as the previously mentioned strain mapping techniques has not been available, until now, with piezospectroscopy. This work shows that piezospectroscopy, recorded over a field of view, can couple with strain maps to locally distinguish elastic moduli, thereby removing the weakness this damage measure is nominal.

Other approaches to estimate local mechanical properties are available such as atomic force microscopy [12,13] and ultrasonic [14] methods. These techniques rely on other physical principles to determine the elastic modulus rather than conventional stress/strain relationships and are currently active fields of research [15,3]. Among these, however, piezospectroscopy stands out as the one technique suitable enough for integration with full-scale mechanical load frames for standard coupon testing [16,17].

Piezospectroscopy with Cr doped Al2O3 has been most widely used as a pressure sensor in diamond anvil cells [18], and as an NDE technique for monitoring the health of thermal barrier coatings [19]. The applications of piezospectroscopy have recently been expanded by the fabrication of alumina-epoxy nanocomposites with tailorable mechanical and PS properties [20]. This produced a material which can be applied as a compliant coating to structures for stress sensing [21–23]. In the process of holistically understanding the multi-scale mechanics of these new materials, the solution of an effective elastic modulus of the nanocomposite with the experimental PS response was discovered [24]. In this work, multi-scale mechanics are extended to a nanocomposite coating, to solve for an effective elastic modulus of the composite substrate in situ mechanical loading.
2. Experiment

The PS nanocomposite coating investigated in this work was manufactured by Elantas PDG, Inc. by mixing 150 nm, Cr doped α-Al2O3 nanoparticles (Inframat Corp.) with 99.8% purity in epoxy to achieve a 20% volume fraction of particles. The coating was applied to a composite substrate consisting of laminated IM7-8552 unidirectional tape (57.7% fiber volume) manufactured with a [45/−45/0/45/−45/90/45/−45]s layup resulting in transversely isotropic properties $E_1 = E_2 = 35$ GPa [25]. The coating has a very small thickness (300 μm) and low modulus (< 1 GPa) which ensures that it does not mechanically reinforce the composite substrate. The coated sample was machined and tested in accordance with composite open hole tension (OHT) ASTM standards [26]. The length, width, thickness and hole size of the coupon were 12, 1.5, 0.15, and 0.25 in respectively.

The sample was loaded at a rate of 0.05 in/min (0.127 cm/min) and held using displacement control using a hydraulic load frame at 10 load points throughout the experiment as marked in Fig. 1. This avoided creep during the higher loads, but prompted stress relaxation which was acceptable since the goal was to observe damage progression. During each hold, PS and DIC measurements were collected on the front and the back side of the substrate, which was spray painted, had an average dot size of roughly 0.2 mm. The DIC images were post processed to have a spatial resolution equal to that of the PS maps (0.4 mm). Furthermore, a post-processing algorithm was created to spatially match up the DIC and PS mapping data. In brevity, the algorithm interpolated data on a new coordinate system using the open hole as a reference. The accuracy of the pixel match up is worst in regions closest to the open hole (≤ 0.4 mm) but is negligible at a few pixels distance away (1–2) [27].

3. Multiscale mechanics to model the PS response

Spatial measurements of substrate strain and PS shift were obtained simultaneously for the first time in an novel experiment [23]. The PS relationships originate from the distortion of the Ligand field around the Cr$^{3+}$ substituational impurity within the Al2O3 lattice. As the lattice is deformed under mechanical load, the energy levels of the Ligand field change, resulting in a frequency shift of the photo-stimulated luminescence [28]. Usually, the PS relationships are dependent on crystallographic orientation, but for a polycrystalline material whose grain size is an order of magnitude smaller than the probed volume (i.e. laser dot size) an averaging effect takes place and simplifies the PS relationship to be a function of the first stress or strain invariant [29]. In this study, the PS shift is considered as the mean shift of the R1 and R2 spectral lines, which has been associated to the first stress invariant [24,30].

Here, the PS response is taken as the substrate’s DIC biaxial strain ($\epsilon_1 + \epsilon_2$) vs. PS shift ($\Delta\sigma$). When evaluating this relationship, a variety of mechanics have to be considered as illustrated in Fig. 2. For linear elastic behavior, a PS response is described by the composite’s PS coefficient (Π_i) in $\Delta\sigma = \Pi_i (\epsilon_1 + \epsilon_2)$

This PS coefficient is experimentally measured for every pixel when the PS shift and DIC biaxial strain maps are combined. This experimental PS coefficient represents a combination of several mechanisms that describe the process when load is transferred from the substrate to the coating. The series of ratios that describe this PS coefficient are shown in the following equation:

$$\Pi_i = \frac{\Delta\sigma}{\epsilon_1 + \epsilon_2}$$

(1)

The first ratio encompasses the relationship between the mean R-line shift with the particle’s first strain invariant (σ_{ii}) as shown in Eq. (2). This is a variation of the equation that commonly uses the first stress invariant (σ_{ii}) with the PS shift by the trace of PS tensor ($\Pi_i = 7.6$ cm$^{-1}$/GPa) [31]. The first stress and strain invariant is interchangeable with the bulk modulus of the particle (K^P) using the relation $3K^P = \sigma_{ii}$

$$\frac{\Delta\sigma}{\epsilon_1 + \epsilon_2} = \Pi_i K^P$$

(2)

The second ratio describes the relationship between the first strain invariant of the particle and coating. This equation was derived using Eshelby’s inclusion mechanics [24] which assumed a spherical particle, and both phases are isotropic. The ratio is a function of the coating (E_c, ν_c) and particle (E^P, ν^P) shown in the following equation:

$$\frac{\epsilon_1}{\epsilon_1} = \frac{3E_c (2\nu_c - 1) (\nu_c - 1)}{(2\nu_c - 1)(2E_c^P + E^P - 4E_c^P \nu_c^P)}$$

(3)

The last ratio describes the relationship between the first invariant of the coating with the biaxial strain of the substrate. A number of steps are associated with obtaining this ratio which are outlined elsewhere [27] and are valid for a thin compliant coating. Briefly, the expression is obtained by equating interface strains ($\epsilon_1^c = \epsilon_1^s$, $\epsilon_2^c = \epsilon_2^s$) between the isotropic coating and transversely isotropic substrate under plane stress ($\sigma_3^c = \sigma_3^s = 0$). In addition,
the expression $\epsilon_{ii}^c / (\epsilon_1^s + \epsilon_2^s) = (1 - 2\nu^s)/(1 - \nu^s)$ is used which is valid for a transversely isotropic material in plane stress. The result is only a function of Poisson's ratio for the coating (ν^s) and substrate (ν^c), given in the following equation:

$$\frac{\epsilon_{ii}^c}{\epsilon_1^s + \epsilon_2^s} = \frac{(1 - \nu^s - \nu^c)(1 + \nu^s)(1 - 2\nu^s)/(1 - \nu^s)(1 - \nu^c)(1 - 2\nu^c)}{(1 - \nu^s - \nu^c)(1 + \nu^s)(1 - \nu^s)(1 - \nu^c)(1 - 2\nu^s)/(1 - 2\nu^c)}$$

(4)

The series of ratios that describe the PS coefficient have now been described and is a function as follows: $\Pi_c = f(\Pi_m, E_p, \nu^p, E^s, \nu^s)$. After all of the applied mechanics, the PS coefficient was not a function of the elastic modulus of the substrate (E^s). To obtain an expression which includes E^s, and solely a function thereof requires a set of assumptions:

1. The strain which the substrate experiences is directly transferred into the particles. This is appropriate with a compliant coating with low elastic modulus and thickness, providing no mechanical reinforcement. This enables the removal of the coating mechanics term and the replacement of the coating's isotropic properties with the substrate's in Eq. (3). Therefore

$$\Pi_c = f(\Pi_m, E^p, \nu^p, E^s, \nu^s)$$

2. The particle's properties are known ($E^p = 400$ GPa, $\nu^p = 0.23$). A variation of particle properties among literature [32–35] has resulted in a conservative uncertainty reported in the Appendix. Π_m is also considered a property of the particle. Therefore

$$\Pi_c = f(E^p, \nu^p)$$

3. Isotropic damage assumes that Poisson's ratio does not change [36], and the substrate's pristine Poisson's ratio can be estimated using classical laminate plate theory [37] ($\nu^s = 0.57$). Therefore

$$\Pi_c = f(E^s)$$

The first assumption makes the substrate isotropic. The challenge is to modify the Eshelby tensor for a transversely isotropic media [38]. For this application, it is desired to solve the Eshelby tensor symbolically, in order to rearrange Eshelby's equation for the matrix's elastic modulus, as was done recently for an isotropic media [24]. The complexity of the explicit solution for a transversely isotropic Eshelby tensor, and lack thereof for a generic anisotropic case [39], results in a challenging undertaking to remove the isotropic substrate assumption.
With the above assumptions, a refined series of ratios can now be combined and rearranged to solve for the substrate’s elastic modulus. This leaves a direct solution of the substrates elastic modulus with an experimental measure of the first order PS coefficient \(\Pi_c \) from the PS response

\[
E^\prime = \frac{E^P \Pi_c \left(\nu_c^2 + 1\right)}{2 \Pi_c - 3 \nu_c \Pi_{tt} (2\nu_c - 1)}
\]
(5)

The character of the PS responses vary depending on their location with respect to the open hole. In Fig. 3, the variation in the PS responses is attributed to the non-proportional and non-uniform loading across the sample’s surface. This, combined with the relatively few data points at low loads, makes for a challenge in determining the first order approximation of \(\Pi_c \).

The composite substrate will have linear elastic behavior until fracture. This is dissimilar to the high volume fraction nanocomposite coating (20%) which has inelastic properties [40,32]. This explains the non-linearity in the PS response, but makes it difficult to quantify \(\Pi_c \) for the elastic modulus calculation.

To have a robust method of obtaining \(\Pi_c \) for every PS response, a yield function is fit to a segment of the PS response from zero load until the maximum PS shift. A Ramberg–Osgood yield function was used because it works well without a well defined yield point [41]. This yield function is normally used for a strain–stress plot, but was modified here for a strain–PS shift plot in Eq. (6). This reformulation of the Ramberg–Osgood formula is appropriate because the PS shift is directly proportional to the strain as derived in the previous section. For brevity, \(\epsilon_b = \epsilon_1 + \epsilon_2 \)

\[
\Delta \nu = \Pi_c \epsilon_b + \alpha \epsilon_b \Pi_c \left(\frac{\epsilon_b}{\epsilon_{by}} \right)^m
\]
(6)

Eq. (6) was fitted to every local PS response such as shown in Fig. 4. The \(\Pi_c \) value as solved by the fitting algorithm varied significantly across the surface due to the sparse number of data points at low loads and was not suitable to solve for \(E^\prime \). Due to the need to have a more consistent estimation of \(\Pi_c \), the yield function was used to interpolate a derivative of the PS response at a very small strain for all of the PS responses. This would be the approximation of the first order PS coefficient before the non-linearity initiated. The strain chosen to evaluate the derivative of the yield function and compute \(\Pi_c \) was chosen to be 0.025 mm/m for all PS responses and is marked in Fig. 4.

4. Elastic modulus and damage mapping

The appropriate mechanics have been derived to calculate the substrate’s elastic moduli \(E^\prime \) from the composite’s first order PS coefficients \(\Pi_c \) and a yield function has been used to obtain a consistent measure of \(\Pi_c \) for every PS response. Now, by applying Eq. (5), an elastic modulus map was created in Fig. 5A and a corresponding histogram in Fig. 5C. Due to a broad distribution within the histogram, uncertainty of the elastic modulus map was investigated before a comparison to \textit{a priori} substrate elastic modulus values.

A significant number of points on the surface were identified to have large errors from experimental sources and a systematic uncertainty, described in the Appendix. When the local uncertainty of elastic modulus calculation exceeded 15.75 GPa, or 45% of the \textit{a priori} known unnotched nominal modulus, the data points were filtered and these points on the elastic modulus map were replaced with white pixels in Fig. 5B post-filter. A significant amount of data points above and below the open hole contain white pixels because the longitudinal \((\epsilon_1) \) and transverse \((\epsilon_2) \) strains are nearly equal and opposite. This also combined with uncertainty from the algorithm used to align and interpolate the data sets based as discussed in the experiment section.

In addition, small regions directly above and below the hole contained negative values of \(\Pi_c \), resulting in a negative \(E^\prime \) and they can be distinguished in Fig. 5A as white pixels pre-filter. These regions are the result of a compressive biaxial strain, but a tensile PS shift. Complex loading conditions associated with the non-proportional loading around the open hole are correlated to the observed negative moduli. One of the PS responses in this region that can be observed in Fig. 3C.

With the uncertainty issues addressed, the PS recorded moduli were compared to a previous test of control samples (16 unnotched) which determined that the nominal elastic modulus was 35 \(\pm \) 3 GPa [25]. The modulus map in Fig. 5A shows a broad distribution of elastic modulus values with a mean centered at 32.2 GPa and a standard deviation of 9.4 GPa post-filter. The large number of data points taken across the surface produced a mean that closely resembles expected values for the unnotched, underlying substrate. The large standard deviation of the PS calculated modulus is proposed to be caused by an inhomogeneous dispersion of the nanoparticles, which is still an active field of research in the material’s development [42]. These agglomerations lead to local variations in particle volume fraction, and thus particle–matrix load transfer mechanics [24].

As a damage measure, the elastic degradation of a material through mechanical loading [43] comes from the reduced effective stress carrying area by the presence of a crack or defect [44]. The latter results in an increase in stress on the remaining part of the material and is associated with a nominal reduction in stiffness [7]. For instance, the nominal modulus of the open hole tension composite coupon was 25 GPa, but the unnotched coupon was 35 GPa.

Conventionally, unloading curves during a mechanical test are used to monitor a reduced elastic modulus from the presence of damage [43]. This reduction in stiffness is referred to as elastic degradation. If unloading curves were not integrated in the experimental procedure, then the unloading curves may be simulated to estimate the reduced mechanical properties. Methods of simulating these unloading curves vary in complexity, ranging from simple elastic degradation models [7] to the involved continuum damage mechanics with coupled plasticity [7]. A simple and convenient method to simulate an unloading curve is to assume no plastic deformation so all unloading curves return to the origin, or contrary, no elastic degradation and purely plastic deformation [7].

In reality, unloading is usually associated with a coupling between the elastic degradation and plastic deformation. Here, a
method for simulating unloading curves was used which included both plastic deformation and elastic degradation as shown in Fig. 6A. The simulated unloading curves only consider plastic deformation and no elastic degradation until the max PS shift has been reached. Further loading past the max PS shift ceases plastic deformation, and initiates elastic degradation.

The slopes of the simulated unloading curves on the PS response can be readily converted into an elastic modulus value with an isotropic damage assumption [36], that is Poisson’s ratio remains constant. The degraded elastic modulus values (E) are normalized with respect to local pristine modulus (E_0), to create a damage measure ($D = 1 - \frac{E}{E_0}$) [8,43]. These damage maps reveal...
intrinsic damage features of the composite substrate. Major turning points in the progression of damage are plotted in Fig. 6. The first significant occurrence of damage is at 76% failure load just adjacent to the open hole. It is known a priori that this region should be experiencing large tensile strains, and is a likely location for damage to initiate. In other work by Camanho [45], a simulation using continuum damage mechanics of a transversely isotropic open hole tension composite coupon predicted initial fiber failure in the 0° ply in this exact region. Additionally, at 76% failure load, audible cracking in the sample suggest that significant damage had initiated.

The next significant progression of damage was at 88% failure load where homogenous damage appeared across the sample’s surface. This experimentally observed phenomena could be due to transverse cracking of the 90° plies which occurs homogeneously through the length of the sample [46]. In addition, literature has described a redistribution of stress occurring once subsurface damage has become significant [47]. This loading point is an important turning point in the mechanical test that may indicate the onset of critical damage.

Next, at 92% failure load, a large propagation of damage occurs on both sides of the open hole. A study using X-ray inspection has revealed similar cracking patterns [47] adjacent to the open hole in a tension test for a similar composite coupon. As the higher failure loads are reached, the damage pattern resembles intra-laminate fiber failure or intra-laminate cracking. As the higher failure loads are reached, the damage pattern resembles intra-laminate cracking.

5. Conclusion

This work has successfully applied multi-scale mechanics to a PS coating experiment to obtain, for the first time, high spatial resolution damage maps using a degrading elastic modulus. Simulation of unloading curves in situ mechanical loading is used to estimate elastic degradation patterns which resemble intrinsic, subsurface damage patterns of the composite substrate [47,46,45]. In addition to locating the size and the location of damage, the ability to quantify the degradation of the elastic modulus enables the distinction of different types of damage. For example, matrix microcracking should change the equivalent modulus by a small amount in comparison to fiber failure or intra-laminate cracking. In the current study, the average uncertainty in the elastic modulus calculation was nearly 10 GPa and results in the detection of only critical damage. Future experiments will be designed to lower this uncertainty to detect more subtle changes in the effective elastic properties and adapt the coating to a wide range of substrates materials. An NDE technique that provides such a comprehensive damage characterization would be very desirable.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant no. CMMI 1130837 and the University of Central Florida Office of Research and Commercialization Inhouse Grant FY 2012. Hong Tat, Gerardo Peña, and Jordan Handler from Boeing Research & Technology are acknowledged for technical discussions.

Appendix A. Elastic modulus uncertainty estimation

A filtering process was used to remove data points with high experimental error as shown in experimental uncertainties in the data collection varied from point to point based on a calculation of a slope (I_U), from local biaxial strain ($\epsilon_{b} = \epsilon_{1} + \epsilon_{2}$) and PS shift data ($\Delta \nu$) in $\Delta \nu = I_U \epsilon_{b}$. Here, U_{ν} and U_{ϵ} were taken as the error bars of the PS response at 20% failure load, which represents the standard deviation of local spatial variations calculated during the interpolation procedure of aligning the two data sets into a global coordinate system [27]. For the PS coefficient (U_{ν}), the systematic uncertainty varies across the surface of the sample with an average value of 38.1 cm$^{-1}$/m of all the post-filtered pixels using the following equation:

$$U_{\nu}^2 = \left(\frac{\partial \Pi_{\nu}}{\partial \nu} \right)^2 + \left(\frac{\partial \Pi_{\nu}}{\Delta \nu} \right)^2$$

(A.1)

$$U_{\epsilon}^2 = \left(\frac{\partial \Pi_{\epsilon}}{\partial \epsilon_{b}} \right)^2$$

(A.2)

This experimental uncertainty for I_U is then plugged into the systematic uncertainty for the elastic modulus calculation given in Eq. (A.2). Every independent variable has its own uncertainty and contributes to the total uncertainty of the elastic modulus. The uncertainties for these values and their contribution to the total uncertainty are as follows: $U_{\nu} = 0.05$ cm$^{-1}$/GPa, $U_{\epsilon} = 50$ GPa, $U_{\epsilon} = 0.05$, $U_{\nu} = 0.05$, each contributing to the elastic modulus uncertainty calculation of 0.2, 3.3, 4.9, and 0.8 GPa respectively. Every pixel in the elastic modulus map has its own independent U_{ϵ} value, and the mean contribution to the elastic modulus uncertainty was 8.6 GPa. With all of the independent uncertainties combined, the mean experimental uncertainty for the substrate’s elastic moduli calculation U_{ϵ} was 10.5 GPa post-filtering. With this being the major contributing factor to the uncertainty, future work aims to design specialized equipment to capture the R-line peak shifts.

References

[25] Marlett K. Hexcel 8552 im7 unidirectional prepreg 190 gsm & 35% rc
[37] Luo AC, Mou Y, Han RP. A large anisotropic damage theory based on an incremental complementary energy equivalence model. Int J Fract 1995;70:19–34.