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Abstract: Compressive sensing (CS) combines data acquisition with compression coding to
reduce the number of measurements required to reconstruct a sparse signal. In optics, this
usually takes the form of projecting the field onto sequences of random spatial patterns that
are selected from an appropriate random ensemble. We show here that CS can be exploited
in ‘native’ optics hardware without introducing added components. Specifically, we show that
random sub-Nyquist sampling of an interferogram suffices to reconstruct the field modal structure
despite the structural constraints of the measurement system set by its limited degrees of freedom.
The distribution of the reduced (and structurally constrained) sensing matrices corresponding
to random measurements is provably incoherent and isotropic, which helps us carry out CS
successfully. We implement compressive interferometry using a generalized Mach-Zehnder
interferometer in which the traditional temporal delay is replaced with a linear transformation
corresponding to a fractional transform. By randomly sampling the order of the fractional
transform, we efficiently reconstruct the modal content of the input beam in the Hermite-Gaussian
and Laguerre-Gaussian bases.
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1. Introduction

In optical interferometry, an interferogram is typically recorded by sweeping a temporal delay, and
the Fourier transform of this interferogram reveals the spectrum [1]. Recently, an interferometric
procedure that allows for an optical beam to be analyzed in terms of a complete and orthogonal (but
otherwise arbitrary) spatial modal basis has been proposed [2,3]. Analyzing an optical beam into
its constituent spatial modes has direct bearing on numerous applications including spatial-mode
multiplexing, quantum communications [4—6], and spiral imaging [7]. The proposed strategy
exploits the usual two-path interferometer configuration (such as a Mach-Zhender interferometer,
MZI), but replaces the optical delay with a unitary spatial transformation parameterized by a
continuous real number that plays the role of a ‘generalized delay’ in modal space. Akin to
temporal interferometry, the Fourier transform of the interferogram — recorded by sweeping the
generalized delay — reveals the beam’s modal content [2, 3]. This procedure has been realized
experimentally for Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) modes in Ref. [8],
where the generalized delays correspond to optical implementations of fractional Fourier and
fractional Hankel transforms, respectively, realized by spatial light modulators (SLMs). This
approach is unique in that the same configuration can be used to analyze a beam in any basis
by simply dynamically changing the phase displayed by the SLMs with no moving parts or
modification of the optical setup.

In practice, measurements are acquired by sampling the (generalized) delay at the Nyquist
rate to avoid aliasing in modal analysis. This requires collecting a large number of samples and
implies more latency, which may be intolerable for delay-sensitive applications.

Compressive sensing (CS) is a strategy for reducing the number of measurements required
to reconstruct a signal by projecting it onto a basis of (typically) random functions, thereby
combining the two steps of data acquisition and compression coding [9, 10]. This procedure
is particularly effective when the signal is sparse — i.e., the signal receives contributions from
a small number of basis functions in some representation [9]. Underlying this approach is an
under-determined linear transformation between the sparse representation and the measurement
basis called a sensing matrix that is amenable to a stable pseudoinversion [9, 11]. CS has found
many uses in optics such as the ‘single-pixel’ camera [12, 13], holography [14—17], optical
imaging and tomography [18-23], optical encryption [24,25], spectral analysis [26], and efficient
quantum state tomography [27-30], and continues to hold promise to impact information recovery
in other applications in optics. For example, ultra-fast communications in multi-mode fibers
and/or free space using spatial multiplexing of optical modes [4,5] is premised in part on fast and
effective decoding on the receiver side, which can greatly benefit from the relaxed requirement on
the number of measurements afforded by CS-based techniques. In Optical Coherence Tomography
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(OCT) [31], CS-based techniques could help reduce complexity in recovering the (normally
sparse) reflectivity indices of the different layers of a sample as the spectral coefficients of the
reflected optical field, or for complex scene understanding using spiral imaging [7].

Our initial theoretical work [32] proposed a compressive approach to interferometry to reduce
the number of interferometric measurements required to faithfully reconstruct the modal weights by
exploiting the modal sparsity of beams in typical scenarios. Instead of recording an interferogram
sampled uniformly at the Nyquist rate, the number of required samples is significantly reduced by
sampling the interferogram at randomly chosen values of the generalized delay and exploiting the
linear compressive sensing (CS) model to harness the sparse representation of the beam in modal
space. However, no performance guarantees were provided in Ref. [32]. This is a crucial issue
considering the fact that, unlike the sensing matrices typically encountered and studied in CS that
are drawn from random ensembles, the sensing matrix corresponding to an optical interferometer
is highly constrained given the limited number of built-in degrees of freedom of the measurement
system. Further, the results provided in Ref. [32] were restricted to numerical simulations. The
main contributions of the current paper lie in establishing performance guarantees for successful
modal reconstruction at sub-Nyquist sampling rates — most notably under the structural constraints
of the measurement system — and realizing the proposed compressive interferometry approach
experimentally.

1.1. Related work

CS-based techniques have been instrumental in realizing compression gains in the recovery
of sparse signals in numerous applications of optics. The concept of the ‘single-pixel’ camera
originating from applying CS to optical imaging [12, 13], for example, has had notable impacts
on holography [14—17], imaging in scattering media [33, 34], imaging gas leaks [35], quantum
imaging [36], spectroscopy [37], 3D imaging [38,39], micro-scanning [40], and microscopy [41].
In this imaging strategy, instead of using a large and expensive CCD or CMOS sampling array, the
incident light field is directed towards a Digital Micromirror Device (DMD) — a programmable
grid of orientable micro-mirrors. Each micro-mirror pixel reflects the light towards or away from
a bucket detector (one with no spatial resolution, hence the ‘single-pixel’ appellation), such
that the measurements amount to a superposition of many pixels weighted by O or 1 depending
on the orientation of the corresponding micro-mirrors. These coefficients form the entries of
an associated sensing matrix, which is a linear transformation that relates the compressive
measurements (acquired by the bucket detector) to the multi-dimensional image. By controlling
the pattern of the DMD which acts as a spatial mask, one can design favorable sensing matrices
to ensure successful signal recovery. Projecting the field onto sequences of random spatial
patterns introduced along the optical path as with the single-pixel camera is generally one of
the most common CS-based techniques in other applications in optics including quantum state
tomography [27,28,30].

The recent work in [42] proposed a new lensless imaging system, in which time-resolved and
CS-based techniques are combined to reduce the acquisition time for imaging a scene without the
need for high-quality lenses and cameras. In this approach, rather than applying random masks to
collect the measurements, the target is illuminated with an active pulsed source with different
illumination patterns [43]. The measurements are then acquired using an array of time-sensitive
sensors placed in the sampling plane. Owing to the use of sensors with high temporal resolution,
this approach achieves substantial gains in acquisition time over the more traditional compressive
techniques (e.g., the single-pixel camera). In addition, the choice of illumination patterns and
control over the temporal resolution of the sensors and their position afford several degrees
of freedom in designing appropriate sensing matrices. However, such sampling systems are
generally complex and costly.

Other applications in optics leverage CS-based techniques to achieve compression gains only
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in the signal reconstruction phase, but not in data acquisition. CS-based spectral domain optical
coherence tomography (SD-OCT) [31,44-46] and Fresnel holography [47] are two examples of
such applications in which a CCD camera is used to collect a large number of measurements, but
only few of them are used for signal recovery using CS-based reconstruction while the rest of the
measurements are discarded. For example, in real-time compressive SD-OCT [46], the image
recovery is accelerated by utilizing three graphics processing units (GPUs) in a parallel setup to
recover the tissue images from a small set of measurements collected by a CCD camera. This
method brings about notable speedups in image recovery in comparison to many of the existing
CS-based OCT systems, however it uses expensive CCD cameras. Multiple-view projection
holography [48] is another domain in which CS has been exploited to address the sensing and
recovery complexities involved in 3D imaging. In this approach, a hologram is generated by
capturing multiple projections of a 3D scene from different angles using a CCD camera. In that
realm, CS recovery algorithms are used to reduce the number of projections required to generate
the hologram, thereby relaxing the sensing difficulties associated with the placement of the CCD
camera. This approach readily comes with successful reconstruction guarantees — owing to the
fact that the rows of the corresponding sensing matrix are samples from the Discrete Fourier
Transform matrix (DFT) matrix.

To put the contributions of our paper in context, Table 1 summarizes how the various existing
approaches exploit CS in optics in light of the description above, along with properties of
the corresponding sensing matrix, and some important features to note when comparing to
our proposed approach. Specifically, obtaining random field projections requires modifying the
acquisition system by introducing random spatial patterns. The active illumination approach yields
significant gains in acquisition time at the expense of additional cost and complexity. Techniques
that exploit CS post-acquisition achieve gains only in computational complexity during the
reconstruction phase but not in sample complexity since they throw away measurements already
collected. We remark that the term ‘unconstrained’ in the second column of Table 1 (which is
a common feature to all previous approaches) should be understood as ‘largely unconstrained’
to signify that there is much freedom in designing the sensing matrix in the approaches listed.
Consequently, the usual CS performance guarantees hold. This is in sharp contrast to our strategy
(bottom row in the table) in which the sensing matrix is highly structured with only limited
degrees of freedom in the form of a generalized delay parameter. This is a crucial difference where
our work differs substantially from previous methods as we have to carry out signal reconstruction
under structural sensing constraints set by the optical hardware (a two-path interferometer here)
and yet be able to establish some form of performance guarantees.

1.2.  Summary of contributions

We underscore four major differences from related work. First, unlike much of the prior work which
introduces random masks along the optical path to obtain randomized measurements [14,30], here
we exploit CS in the native optics hardware without modification to the underlying interferometer
structure nor addition of new hardware components. In other words, we continue to use the
same setup and hardware we would use if we were to sample at the full Nyquist rate. As such,
we reduce the sampling and reconstruction complexity without increasing the implementation
cost. Second, this is the first work to realize compression in the generalized interferometry
framework introduced recently by some of the authors to carry out modal analysis in arbitrary
domains [2,3, 8]. In this framework, the conventional temporal delay is replaced by a ‘generalized
delay’, namely, a suitable unitary transformation in the form of a fractional transform for which
the modal basis elements are eigenfunctions. Third, we achieve compression gains both in the
acquisition time and the number of measurements used for reconstruction. This is in sharp
contrast to prior works [31,47] employing CS in optical interferometry, which solely focused on
reducing the number of measurements. As we pointed out earlier, in this line of work a large
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Table 1. Summary of existing approaches in which CS is exploited in optics along
with properties of the corresponding sensing matrix. The rightmost column highlights
distinguishing features when comparing these approaches to our work. The bottom
row refers to our proposed approach studied here.

Approach

Sensing matrix/structure

Distinguishing features

Random field projections:
e.g., usinga DMD as a
random mask in a single-pixel
camera configuration [12,15]

Random with binary-valued
coefficients / unconstrained;
e.g., Hadamard matrix

System modification is needed by
adding extra hardware components;
Gains: reduction in sampling costs and
reconstruction complexity

Active illumination:
e.g., lensless imaging with
structured illumination [42]

Random or designed / unconstrained:

e.g., Hadamard patterns; has a
large number of degrees of freedom

Costly and difficult to setup;
Gains: short sampling time and
reduction in reconstruction complexity

Post-acquisition or utilizing
high-resolution cameras:

DFT sub-matrix / unconstrained

Using large high-resolution cameras
Gains: reduction only in

e.g., CS-OCT [31] reconstruction complexity

Uses native optics hardware
(no additional components);
Gains: reduction of acquisition time
and reconstruction complexity

Basis-neutral approach
to generalized interferometry
(studied here)

Highly-constrained / structured;
rows set by choice of
generalized delay parameters

number of measurements is first collected using a high-resolution camera. Subsequently, most of
the already-collected measurements are discarded and only a few are used for reconstruction on
the basis of signal sparsity. While this approach reduces the computational complexity associated
with signal reconstruction (fewer measurements are used for recovery), it does not translate into
savings in data acquisition time. By contrast, our approach collects a small set of measurements
in the first place, thereby achieving the twin objectives of reduced sample size and computational
complexities. Recalling that we do not modify the interferometric setup from the one used for
sampling at the full Nyquist rate, it is not clear at the outset whether the constrained sensing
structure lends itself to any form of performance guarantees under sub-Nyquist sampling. Our
fourth contribution lies in establishing analytical guarantees for successful modal reconstruction
from compressive measurements under sensing constraints set by the limited degrees of freedom
of an optical interferometer.

We introduce CS into a prototypical optical system — a two-path interferometer — and demon-
strate experimentally that sampling the interferogram below the Nyquist rate still enables
spectral/modal recovery. We first cast the procedure of interferometric spectral/modal recon-
struction as a linear measurement problem. We find that the reduced sensing matrix associated
with random sub-Nyquist sampling satisfies sub-optimal conditions of isotropy and incoherence,
thereby enabling compressive reconstruction from fewer samples [32]. We denote this overall
optical measurement scheme compressive interferometry since it combines reduced data acquisi-
tion (reduced number of interferometric points sampled) with compressive coding (replacing
harmonic analysis with CS reconstruction).

2. Compressive model

For sake of generality, we employ a two-path interferometer in which the usual temporal delay is
replaced by a ‘generalized delay’ that operates in the Hilbert space defined by any modal basis of
interest [2,3]. Such a delay corresponds to an optical transformation that has this modal basis
as eigenfunctions, which reduces to the traditional temporal delay when spectral harmonics are
of interest. The ‘delays’ for Hermite-Gaussian (HG) or radial Laguerre-Gaussian (LG) modal
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Fig. 1. Concept of compressive optical interferometry. (a) Schematic of the traditional CS
scheme in optics, where the field E(x) is subject to random projections before measurements.
(b) The mathematical concept used in traditional CS. The field is represented by a M1 vector
x that is transformed by a M XN sensing matrix ® (with disordered entries corresponding to
the random masks) to yield a M x1 measurement vector y, from which x is reconstructed. (c)
The generalized interferometry scheme. The input beam E(x) is directed to a Mach-Zhender
interferometer in which a generalized delay « replaces the usual temporal delay. Two copies
of E(x) are created at a beam splitter and the modes {¢,,(x)} underlying the beam acquire
phase shifts of the form ¢@ after passing through the generalized delay to yield a new
beam E(x;a). The original and ‘delayed’ beams combine at another beam splitter, and
their superposition is integrated by a bucket detector to produce an interferogram. (d,e)
Graphical depiction of the matrix form of a generalized interferogram. (d) With evenly spaced
Nyquist-rate sampling of the interferogram M >2N, the interferometric sensing matrix ®jp,
has a well-defined deterministic structure. (e) With sub-Nyquist randomly sampled points «,
®;,, now appears disordered and similar to ¢ in (b).
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bases are optical realizations of the fractional Fourier transform (FrFT) [49, 50] or fractional
Hankel transform (FrHT) [51], respectively. In all cases, the compressive interferometry strategy
replaces harmonic analysis of the Nyquist-sampled interferogram with random sub-Nyquist
sampling without modifying the native optical hardware. By constructing an intrinsically stable,
basis-neutral interferometer that includes realizations of fractional transforms [8], we confirm
that CS helps successfully reconstruct the modal weights of sparse optical beams in a basis
of HG or LG modes from the random sub-Nyquist samples. This may help in delay-intolerant
applications that require real-time acquisition and processing, such as real-time imaging and
high-speed communications exploiting spatial multiplexing.

A typical optical implementation of CS is depicted in Fig. 1(a) [12,27,28]. Consider an optical
field E(x)=3, ca¥n(x) represented in an N-dimensional orthonormal basis {,,(x)}, and E(x)
is normalized such Y |c,|*> = 1. Here x may refer to one or more spatial dimensions, or even
time. The N X 1-vector x={c, } of coefficients is s-sparse if it receives contributions from <s
elements. In lieu of the M > 2N Nyquist-rate measurements normally required to reconstruct
x, CS leverages sparsity to reduce M by projecting the field onto a sequence of random masks
selected from a Gaussian ensemble to produce a new M X 1 measurement vector y. Effectively,
the field has undergone a linear transformation represented by an M XN sensing matrix ®, y = Px
[Fig. 1(b)]. CS exploits this under-determined linear system to compressively recover x from
M ~O(slog N)< N linear measurements of y — provided some conditions on ® are satisfied. For
example, Basis Pursuit (BP) recovers x if ® satisfies the Restricted Isometry Property (RIP) [10],
which requires that (1 — ¢)||x||? < ||®x||> < (1 + 6)||x||?, for any s-sparse X, where 0 < § < 1
is a constant. Sensing matrices from Gaussian ensembles, for example, satisfy the RIP with
overwhelming probability [10]. The random masks introduce new components into the optical
system, thus adding to its complexity while reducing the number of measurements acquired.

The compressive interferometry scheme relies on a different strategy. Consider an interferogram
P(a) traced by scanning a ‘delay’ @ placed in one arm of a two-path interferometer [Fig. 1(c)]. With
respect to the modal basis {¢,(x)}, such a delay is an optical transformation having a continuous
real control parameter a, A(x,x";@) = 3, ¢y, (x)y(x’), which is a fractional transform
having the basis functions as eigenstates with eigenvalues ", and A(x, x’; 0)=6(x — x’) [2].
The parameter « acts as a ‘delay’ in the Hilbert space spanned by {i,,(x)} just as a delay 7 does
in the time domain. That « is in fact a delay can be readily seen by superposing the delayed
field E(x; @) =fdx’A(x, x;a)E(x")=3, cpe" ¥, (x) and the reference E(x;0) to produce the
interferogram

N
P(a) oc/dx |E(x;a) + E(x;0)2 =1 + Z len|? cos(na). (1)

n=1

The modal coefficients x={|c,|*} are revealed by taking a Fourier transform (FT) with respect to
a. This requires sampling « at the Nyquist rate dictated by the highest-order mode N — even if
only a few modes contribute significantly [Fig.1 (d)].

To show that CS algorithms may recover the sparse vector X from M <« N measurements, we
first cast P(@) from Eq. (1) with selected values of « into a linear model. A M XN interferometric
sensing matrix ®;,, relates the Nx1 vector x of contributions from each Hilbert-space basis-element
to the M X 1 measurement-vector y that contains the sampled interferogram [Fig. 1(e)],

P(a;)-1] [cosa; cos2a; ... cosNai][le1]?
P(an)-1| |cosar cos2a; ... cosNay|||c2|?
.= 2
P(ap)—1 |cosap cos2ap ... cosNap| |len|?
—_——— —_———

y q’im X
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Here, ®;,, corresponds to any interferometric measurement, temporal or otherwise.

3. Properties of the sensing matrix

The sparsity of the vector or signal of interest (in some basis) alone does not premise successful
recovery in sub-Nyquist sampling regimes using CS-based reconstruction. Establishing perfor-
mance guarantees for sparse reconstruction also necessitates having an appropriate sensing matrix
mapping the sparse vector to the lower-dimensional measurement space. To clarify, consider the
simple scenario with measurements y = ®x, where ® = I, the identity matrix. Obviously, in
this case one cannot reconstruct an arbitrary sparse vector x if only few rows of the matrix ¢
are given. Hence, although the exact x is readily available from full measurements, we cannot
recover X from few measurements selected at random as we are likely to miss the nonzero entries
on the support. Another example is one in which the sparse vector lies in the null-space of the
sensing matrix. In this case, recovery is not possible even though the vector is sparse. A classic
example from the CS literature where sub-Nyquist sampling also fails despite the sparsity of the
signal is when the sensing matrix ® is strongly coherent with the sparsifying basis ¥ — the basis
in which the signal admits a sparse representation — i.e., when the maximum correlation between
the rows of ® and columns of W is large [52]. For instance, a submatrix from the Discrete Fourier
Transform (DFT) does not avail substantial compression gains when ¥ is the Inverse Discrete
Cosine Transform (IDCT) matrix given that they have large mutual coherence.

A general rule-of-thumb is that an appropriate matrix for CS should preserve distances
between vectors (signals) after the high-dimensional sparse signals are embedded into the
lower-dimensional space defined by its range. For example, this property is fulfilled if the sensing
matrix satisfies the RIP for 2s-sparse vectors with a sufficiently small ¢. Besides, being RIP
implies that none of these sparse vectors falls in the null-space of the sensing matrix.

The sensing matrix ®;, arising in our setup differs fundamentally from those typically employed
in CS applications in optics [Fig. 1(a) and 1(b)], where controllably random transformations ¢
are realized by an array of random patterns that are judiciously selected such that ® has the RIP,
for example. In interferometry, this freedom in designing ®;,, is not available because ®;, has a
fixed structure with few controllable degrees of freedom (the values of the delay parameter a)
imposed by the constrained sensing structure (the interferometer itself). Hence, it is not clear at
the outset if the sensing matrix ®;,, satisfies any of the known sufficient conditions for successful
CS recovery. Therefore, to decide if sub-Nyquist sampling of the interferogram and CS-based
reconstruction will succeed in our setting, it is crucial to investigate the properties of the sensing
matrix ®jp.

Given the constrained form of ®;,; in Eq. (2), it can be shown that selecting random values
of a from a uniform distribution at a sub-Nyquist rate yields ®;, that satisfies the RIP with
high probability when M and N are sufficiently large. For smaller values of M and N, however,
the RIP constant ¢ is large. The sufficient conditions for all existing reconstruction algorithms
require smaller values of ¢ to guarantee successful reconstruction. For example, a sufficient
condition for BP requires ¢ < V2-1. Having the large ¢ associated with ®;, therefore does not
guarantee reconstruction on the basis of these requirements. As an illustration, in Fig. 2(a) we
plot 7(x) = (||(v/2/M)®inx||?/|Ix]|>) — 1 with a typical realization of the sensing matrix for a
subset of an ensemble of 10° sparse-vector realizations x with s =4, where maxy [17(x)| < 6. A
histogram constructed from the full ensemble is plotted in Fig. 2(b), showing that the requirement
of a small enough ¢ is unsatisfied. While such a requirement may not be necessary, given existing
knowledge it is not known if the corresponding bound on ¢ is tight, i.e., if some performance
guarantee can be established with a relaxed RIP constant. Therefore, we resort to verifying a
more general RIP-less notion to establish performance guarantees. In particular, we are able to
show that the sensing matrix ®;,; with randomly selected a indeed belongs to a random ensemble
satisfying weaker incoherence and isotropy properties despite its limited degrees of freedom
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Fig. 2. (a) Calculated values of (x) = ||(v/2/M)®inex||%/|Ix]|? — 1 for s-sparse (s =4) vectors
x. (b) Histogram of 7(x) for an ensemble of 10° realizations of s-sparse vectors. (¢) The
sensing matrix ®j,; from Eq. (2) with randomly sampled «a. (d) ®jy is incoherent with
incoherence parameter ¢ =1 and satisfies the isotropy property E{¢pT¢}=0.51

imposed by the interferometric process. Provably, such matrices also yield explicit reconstruction
guarantees via BP or other recovery algorithms such as the Dantzig selector or LASSO [53].

To clarify, let ¢ denote a row of the sensing matrix selected from a random ensemble ¥. The
incoherence parameter u(¥) is defined as the smallest number for which max,,|¢,|> < u(¥),
n=12,...,N, where ¢, are the entries of ¢. The distribution ¥ is said to obey the isotropy
property if E[¢ @] =al, where E[.] is the expected value, I the identity matrix, a some constant,
and ¢ the conjugate transpose of ¢. The matrix ®;, satisfies the conditions of incoherence and
isotropy for a randomly selected from a uniform distribution over [0, 27r] with u=1, as confirmed
in Fig. 2(c) that shows ®;,; consisting of M rows selected from the full matrix in Fig. 1(d). The
matrix appears random in spite of being sampled from a structured sensing system. The matrix
@, is shown to satisfy the isotropy property in Fig. 2(d).

4. Experimental results

We now move on to implementing the compressive interferometric scheme experimentally. The
generalized delay transformation A(x, x’; @) has the modal basis {¢,,(x)} as eigenfunctions and
its order parameter « represents the delay in the Hilbert space spanned by this basis. We carry
out our experiments using two modal bases, 1D HG functions and radial LG functions. The delay
transformations A(x, x’; @) in these two modal bases correspond to the FrFT [49, 50] and the
FrHT [51], respectively [2,3]. The usual temporal delay is replaced with an optical realization of



|

Vol. 26, No. 5 | 5 Mar 2018 | OPTICS EXPRESS 5235

Optics EXPRESS

SLI\/I Lens SLM Lens
@ H HWP . . H I H PoI
U V
2f 2f
(b) 2.0 — ideal
154 % Simulation
_ o Experimen
1.0
0.5
0.0 T
0 1 2

o/

Fig. 3. (a) Implementation of the sampling system as a common-path interferometer leveraging
the polarization-selectivity of liquid-crystal-based SLMs. (b) Interferograms collected by
assigning different values to the generalized delay parameter  when HGj is the only active
mode. The figure shows three interferograms collected by an ideal frFT, a simulation that
accounts for the pixelation and quantization effects of the SLMs, and the actual experimental
setup.

the appropriate fractional transform, whose order « is swept in the interval [0, 2] to produce
an interferogram P(«). We construct these fractional transforms using spatial light modulators
(SLMs) that realize generalized cylindrical or spherical lenses to produce the FrFT or FrHT,
respectively, of desired order [54].

4.1. Experimental setup

The optical beam used in our experiments is provided by a laser diode at 808-nm wavelength.
We spatially filter the beam by first coupling it into a single-mode fiber (Thorlabs, FS-SN-4224)
followed by collimation and then size-control using a variable beam expander (Thorlabs, BE02-
05-B) to produce a Gaussian beam with a full-width at half-maximum of 0.6-mm at the entrance
of the optical system.

Note that the FrFT (and by implication also the FrHT) can be implemented via a sequence of
lenses. The order of the fractional transform can then be varied either by fixing the focal lengths
of the lenses but varying their relative separation, or alternatively by fixing their separation
and varying their focal lengths (so-called generalized lenses). In our experiment, we exploit
the latter approach and make use of SLMs to implement a lens by realizing the appropriate
quadratic phase distribution. We use the same realization of the FrFT and FrHT that we reported
on in Ref. [8] that requires three SLMs — p;, p», and p3 in Fig. 3(a). Because the first and last
SLMs p; and ps realize the same lens, the number of SLMs required can be reduced to two by
exploiting a reflection configuration in which pj3 is folded back onto p;. These reflection-mode
SLMs were Hamamatsu LCOS-SLM (X10468-02) having 800x 600 pixels, an effective area
of 16x12 mm?, and 256 quantized phase levels (8 bits). The angle of incidence on SLM p; is
< 10deg, the reflected beam is directed to SLM p, at normal incidence. The retro-reflected beam
again impinges on SLM p; and then imaged to the detector plane. The phases implemented by
the SLMs are designed to implement cylindrical or spherical lenses that in combination produce
the FrFT or FrHT, respectively, of the desired order.

Instead of placing this realization of the FrFT or FrHT in one arm of a Mach-Zehnder
interferometer as shown in Fig. 1(c), we exploit a different interferometric setup that is intrinsically
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stable by exploiting the polarization-selectivity of liquid-crystal-based SLMs [55] to create a
common-path interferometer. The input beam is horizontally polarized and the SLMs modulate
the horizontal polarization only — which thus undergoes the generalized delay — while the
vertical polarization represents the reference. A common-path polarization interferometer is then
configured by first rotating the input polarization via a half-wave plate from horizontal to 45 deg.
At the output a polarization projection superposes the reference and the delayed beams into a
single polarization mode and yields the generalized interferogram as the delay is swept.
Finally, since the vertically polarized reference field is not impacted by the SLMs, it undergoes
diffraction resulting from free-space propagation from the entrance of the setup to the exit, which
is undesirable. We thus place two lenses (focal length of each is f =500 mm) in a 4 f imaging
configuration that maps the entrance plane to the exit, thus eliminating this unwanted diffraction.
The phases implemented by the SLMs are then modified to retain the targeted orders of the FrFT
and FrHT. At the output, an image of the beam at the output of the common-path interferometer
is recorded for each value of the generalized delay by a CCD camera (The Imaging Source, DFK
72BUCO02). The setup implemented is shown schematically in Fig. 3(a); see Ref. [8] for details.

4.2. Results

In the compressive interferometry approach, « is randomly sampled at a sub-Nyquist rate. We
study the performance of this strategy by comparing the modal reconstruction in the HG and
radial LG bases to that obtained via the FT. M measurements are collected randomly by selecting
generalized phases «;, j=1,2,..., M from a uniform random distribution [0, 27r], and we use
the BP algorithm to reconstruct the vector X of modal coefficients. The reconstructed vector is
then compared to the vector Xpr obtained from the FT of 128 uniformly sampled interferometric
measurements by computing the scaled error metric, ||xpr—%]||7||xpr||?. For each example, the
average reconstruction error is evaluated by averaging over 100 runs. The number of potential
modes is N =64. Figures 4(a) and 4(b) show the reconstructed modal coefficients using FT and
CS for input beams formed from individual HG or LG modes, respectively. In Fig. 4(c), we
plot the reconstructed modal coefficients for two beams formed of different superpositions of
HG modes. The performance of the BP algorithm is comparable to that of FT using M =30
compressive measurements (=25% of the measurements in FT), leading to substantial savings in
acquisition time without any added complexity to the system. The reconstruction error is plotted
in Fig. 5 (a) as a function of M. The average error approaches zero when M = 25. Statistical
analysis of the observed error reveals that the required number of measurements lies between
M =15 to M =30 to attain nearly error-free reconstruction. Fig. 5 (b) compares the reconstruction
error achieved in the experiment to that obtained from numerical simulation as a function of the
number of measurements for the HGsz mode. As shown, the experiment and simulation results
exhibit a fairly close agreement. The discrepancy in the error floor at convergence is due to
limitations of the SLMs unmodeled in our simulations (c.f. discussion in Sec. 5 on practical
limitations.)

5. Discussion

Two-dimensional (2D) modal analysis: In this work, we investigated the performance of the
proposed compressive interferometry approach in analyzing a light beam based on 1D HG and
LG modes, however, our approach extends naturally to 2D settings with two degrees of freedom.
For further details, we refer the reader to [32], where we investigated (in theory) compressive
analysis of a light beam in two sets of HG modes (HG-HG modes) with two (Cartesian) spatial
degrees of freedom, and also Orbital Angular Momentum (OAM) and LG modes (OAM-LG
modes) with angular and radial degrees of freedom. It has been shown that 2D modal analysis
can be achieved by cascading two generalized delays (phase operators) in the reference arm of
the interferometer corresponding to each degree of freedom. For example, to analyze an incident
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Fig. 4. Reconstructed modal distributions using the FT and CS approaches. (a) The modal
weights lcn|? calculated for fields in the HG-basis by applying the FT to Nyquist-rate
evenly sampled interferograms (blue) and CS to sub-Nyquist randomly sampled (yellow)
interferograms. (b) Same as (a) for LG modes (LG and LG ) and (c) for superposition of
HG modes (HGy+HG; and HG| + iHGj). For FT, we use 128 evenly spaced values of «
from 0 to 27. For CS, we use M =30 randomly selected & ~ U0, 27r]. The insets show the
ideal (exact) and approximated modes that are implemented experimentally. For HG( and
LGy, the modes are produced without approximation.

light beam in its OAM-LG modes, the reference arm of the interferometer is realized by a rotation
operator followed by a fractional Hankel transform.

Practical limitations: Due to practical considerations, there exist several sources of inaccuracy that
affect the quality of the measurements collected, which could in turn lead to some degradation in
modal reconstruction. One is due to the use of inexact (non-ideal) optical modes in the experiments
shown in the insets of Fig. 4 (see Ref. [8] for more details on the generation of such modes). As
such, even if the incident light beam consists of a single mode, it will have non-vanishing (albeit
small) projections on the rest of the elements of the modal basis (in addition to the dominant
mode) due to loss in orthogonality. Hence, the coefficient vector x typically contains small
nonzero entries for the various modes in addition to the dominant entries corresponding to the
active modes. Such vectors are referred to as ‘compressible’ vectors since they are not exactly
‘sparse’. A second source of inaccuracy is due to noise, usually modeled as additive noise, i.e.,
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Fig. 5. (a) Reconstruction error versus number of measurements M. Each curve results from
averaging over 100 runs of the experiment. The average curve (solid black) is the mean and
the shaded area designate one standard deviation spread on either side of the required M for
1000 randomly generated examples of sparse vectors with support size s <4. (b) Comparing
the reconstruction error in the experiment to that of the ideal case with an approximate HG3
mode for SNR= 20 dB.

y = ®ineX + n, where n is an additive noise vector with bounded £,-norm. While denoising
algorithms (e.g., denoising BP [10], Dantzig selector [56]) could be used to enhance performance,
such algorithms typically require additional side information about the noise (for example, a
reliable upper bound on its £;-norm) to enhance the stability of the solution given the loss in
SNR. Unfortunately, such side information is generally hard to obtain in practice. Another source
of inaccuracy is due to unavoidable physical constraints and hardware limitations. Specifically,
limitations include the clipping effect due to the finite-aperture size of the SLMs, limited spatial
resolution of the phase on the SLMs due to their non-vanishing pixel size, and phase granularity
due to the finiteness of the number of phase quantization levels (c.f. [8] for further details). As
shown in Fig. 3(b), the actual interferometric measurements do not perfectly agree with the ideal
measurements due to such imperfections. This figure also displays simulation results where we
partially account for the effects of clipping and SLM pixelation improving the agreement between
the experimental and numerical results. These imperfections typically manifest themselves in the
measurement model non-linearly, and an exact analysis of the performance bounds accounting
for such imperfections remains elusive.

Peformance bounds: The reconstruction error does not necessarily converge to zero as we increase
the number of measurements as seen in Fig. 5 (a) (e.g., the HG3 mode). Inexact reconstruction
can be foreseen based on [53, Theorem 1.3], which provides an upper bound on the reconstruction
error under an additive noise model in terms of the variance of the noise and the norm of the
residual error from the best s-sparse approximation of the (compressible) vector x given the
incoherence and isotropy properties. However, predicting an actual (tight) upper bound from
the theory is prohibitive in our non-ideal experimental setting since neither is knowledge of the
variance of the noise and the residual error at our disposal, nor do we have an exactly additive
noise model (due to the aforementioned non-linearities from hardware limitations).

Complexity analysis: The proposed compressive interferometry approach requires sampling a
number of measurements M of order O(s log N) versus O(N) for Nyquist sampling. This signifies
substantial saving in data collection time, especially for sufficiently large problem sizes. For
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decoding, a separate processor is used to run a fast algorithm to recover the modal content
from collected interferometric measurements. For simplicity, in this paper we have used Basis
Pursuit (BP) as our algorithm of choice, however, faster recovery algorithms (such as Orthogonal
Matching Pursuit [57]) known to run in nearly linear time O(N M) could also be adopted. Since
M = O(slog N), the decoding complexity of such algorithms is of the same order of O(N log N)
for FFT for small s (sparse beams). We remark that BP (which relies on standard LP relaxation)
still runs in favorable polynomial time, which suffices for our purpose since we are not dealing
with excessively large problem sizes. Thus, the reduction in processing time, which combines both
the sampling and decoding times, is mostly proportional to the saving in sample size complexity,
which is considerable in regards to scaling laws.

6. Conclusion

In conclusion, we have devised a compressive approach to interferometry whereby the modal
content of light beams can be recovered by sampling intereferograms randomly at sub-Nyquist rate
using native optics hardware, which was demonstrated experimentally. Two fundamental differ-
ences distinguish our strategy from prior work employing CS in optics. First, the interferometric
sensing matrix is imposed through the structure of the interferometer. As such, compression has to
be carried out under sensing constraints enforced by the limited degrees of freedom of the sensing
system. Second, previous work in the context of interferometry focused on reducing the number
of measurements used for reconstruction, but not on compressive data acquisition. By leveraging
the notion of generalized delay, our approach enables compressive modal analysis in an arbitrary
modal basis. Furthermore, we established provable guarantees for successful reconstruction
despite the sensing constraints set by the limited degrees of freedom of the interferometer.
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