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We evaluate the heterodyne efficiency of a heterodyne (coherent) detection system for partially polar-
ized, partially coherent, quasi-monochromatic beams. The beam-coherence-polarization (BCP) matrix
is used for the description of the statistical ensemble of this class of stochastic beams. We investigate
the dependence of the efficiency of the detection process on the beams parameters as the beams propa-
gate in free space. We discuss how the optimization of the detection system can be performed for
received beams with different coherence and polarization properties by adjusting the corresponding
properties of the local oscillator beam. The dependence of the mixing efficiency on the size of the receiv-
ing aperture is emphasized. We derive an analytical expression for the heterodyne efficiency in the case
when both the received beam and the local oscillator beam belong to a broad class of so-called electro-
magnetic Gaussian Schell-model beams. Our analysis is illustrated by numerical examples.
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1. Introduction

Optical heterodyne (coherent) detection is a powerful tech-
nique for the detection of weak signals or signals which are
embedded into strong incoherent backgrounds [1,2], because in
such situations it can perform much better compared with a direct
(incoherent) detection [3]. The heterodyne detection system is
characterized by its capability of noise reduction and by its high
spectral resolution [4,5]. Because of these advantages it has been
extensively studied from different perspectives (see, for example,
[6,7]).

In order to estimate the performance of a heterodyne detection
system one conventionally uses the signal-to-noise ratio (SNR) as a
measure for the capability of the system to reject the noise inher-
ent in it or the heterodyne efficiency as a metric to measure the
mixing efficiency of the two overlapped beams on the detector sur-
face. Fink [8] derived a general expression for the SNR and hetero-
dyne efficiency of heterodyne detection of coherent beams, in terms
of the intensity distributions of the mixed beams across the detec-
tor surface, taking into account the size and the shape of the detec-
tor as well. Lathi [9] derived an expression for the SNR for two
linearly polarized, partially coherent beams, which are mixed on
a detector surface; later Lathi and Nagel [10] also gave optimiza-
tion criteria for the choice of the parameters of the local oscillator
beam, which maximizes the SNR when detecting such a beam. Re-
cently, Salem and Dogariu [11] obtained an expression for the SNR
ll rights reserved.
when partially polarized, partially coherent beams are detected
coherently. In [11], however, only a special case was treated in de-
tails, namely, when the mixed beams have uniform polarization
across the detector surface. The heterodyne efficiency has been
considered as a measure of quality of a heterodyne detection sys-
tem to evaluate the performance of the coherent detection tech-
nique compared with the incoherent scheme [12]. It has been
considered also to be a measure of the misalignment between
the received beam and the locally generated one in coherent detec-
tion systems [13]. The heterodyne efficiency of a coherent detec-
tion system has been discussed in many publications in
connection with the evaluation of the performance of coherent
detection systems. For example Cohen [14] examined the effects
of the phase-front misalignment between detected overlapped
beams on the mixing efficiency. He studied the case of mixing fully
coherent beams for different distributions of the beams intensity.
Tanaka and Ohta [15] have studied the effect of the tilt and the off-
set of the received signal on the heterodyne efficiency of Gaussian
beams and Tanaka and Saga obtained optimal conditions for the
maximum heterodyne efficiency in coherent detection systems in
the presence of background radiation [16]. Recently Salem studied
the problem of coherently mixing two partially coherent beams
with a small phase shift between their wave vectors, which reflect
on the misalignment of the two beams [17]. The author empha-
sized the effect of this slight phase difference on the heterodyne
detection of beams of any state of coherence.

It has been shown relatively recently that the coherence and the
polarization properties of, quasi-monochromatic stochastic
electromagnetic beams can appreciably change as the beam
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Fig. 1. Illustrating notation relating to the propagation of a beam in free space.
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propagates, even in free space (cf. [18]). Moreover, the polarization
of the beam can vary not only along the propagation distance but
also in a direction perpendicular to it. Hence, even if the beam is
generated with certain polarization properties, (usually being uni-
form across the transverse plane), after propagation, it will gener-
ally have somewhat different (and, moreover, usually not uniform)
polarization properties across the surface of the detector.

In this paper we generalize the definition of the heterodyne effi-
ciency, given in Ref. [17] for scalar beams, to stochastic electro-
magnetic beams based upon the definition for the detected
power of a heterodyne system of stochastic electromagnetic beams
provided in [11]. We study the detection of beams propagating in
free space from a remote source to a detector surface. Moreover, in
order to carry out the most complete optimization of the detection
system we will consider that the locally generated beam, akin the
received beam, might also propagate a certain distance to the
detector surface. The aim of this paper is to examine how the het-
erodyne efficiency of the system varies, not only with the size of
the detector and the polarization properties of the mixed beams,
but also with the propagation distances. Whilst the parameters
of the received beam are not known, those of the local oscillator
beam are fully controllable. We will show that the parameters of
the local oscillator and the detector size can be chosen to maximize
the mixing efficiency of the detection system.

The paper is organized as follows: in Section 2 we review free-
space propagation of quasi-monochromatic, partially polarized
beams of any state of coherence emphasizing the evolution of
the polarization properties of the beam across its cross-section
when the propagation distance increases. We will consider the
propagation of a particular class of beams, the so-called electro-
magnetic Gaussian Schell-model (GSM) beams. In Section 3 we
introduce the heterodyne detection system in which both the re-
ceived beam and the local oscillator beam are partially polarized,
partially coherent, quasi-monochromatic beams, which reach the
detector surface after free-space propagation from their generating
sources. In Section 4 we apply the definition of the heterodyne effi-
ciency of a coherent system when the mixed beams are electro-
magnetic Gaussian Schell-model beams. We derive an analytical
expression for the heterodyne efficiency when two electromag-
netic GSM are combined coherently. Finally, in Section 5 we show
by some numerical examples how different parameters of the
beams affect the mixing efficiency in a coherent detection system.
The optimization of the detection can be made by adjusting the
size of the detector aperture and the properties of the local oscilla-
tor beam.

2. Free-space propagation of a stochastic electromagnetic beam

We begin by giving a brief review for the free-space propagation
of quasi-monochromatic partially polarized, partially coherent
beams and we examine how the intensity and the polarization
through the cross-section of the beam in the transverse direction,
change with increasing propagation distance. As we will see in Sec-
tion 5, such changes have important implications on the detection
system.

Suppose that the source is located in the plane z = 0 and gener-
ates a quasi-monochromatic, partially polarized, partially coherent
beam propagating close to the positive z direction (see Fig. 1). The
statistical ensemble of such a stochastic beam can be defined in
terms of second-order correlation properties of the beam in the
source plane using the so-called beam-coherence-polarization
(BCP) matrix [19]

Jðq01; q02;0Þ ¼
Jxxðq01; q02;0Þ Jxyðq01; q02;0Þ
Jyxðq01; q02;0Þ Jyyðq01; q02;0Þ

 !
: ð2-1Þ
The elements of this matrix are the correlation functions between
the mutually orthogonal components of the electric field, Ex(q

0
, 0)

and Ey(q
0
,0), at points with transverse position vectors q01 and q02

in the source plane at the same instant of time, i.e.,

Jijðq01; q02;0Þ ¼ hE
�
i ðq01;0ÞEjðq02;0Þi; ði; j ¼ x; yÞ; ð2-2Þ

where the asterisk denotes the complex conjugate and the angular
brackets denote the ensemble average. The elements of the BCP ma-
trix of the beam [Jij(q1,q2,z)], at distance z from the source plane,
can be calculated from the corresponding elements of the BCP ma-
trix defined by Eqs. (2-1) and (2-2), i.e., Jijðq01; q02;0Þ, using the prop-
agation laws (cf. Ref. [20]) within the assumption of the paraxial
approximation

Jijðq1; q2; zÞ ¼
1

k2z2

Z Z
Jijðq01; q02;0Þ

� exp � ik
2z
½ðq1 � q01Þ

2 � ðq2 � q02Þ
2�

� �
d2q01 d2q02;

ði; jÞ ¼ ðx; yÞ; ð2-3Þ

where k = 2p/k is the wave number of the beam, k is the central
wavelength of the quasi-monochromatic wave and the integration
extends over the source domain.

We will now assume that the source generates the so-called
electromagnetic Gaussian Schell-model (GSM) beam. Following
Ref. [20], the components of the BCP matrix characterizing such a
beam in the plane of the source are given by the expressions

Jijðq01; q02;0Þ ¼ Iij exp �ðq
02
1 þ q022 Þ
4r2

� �
exp �ðq

0
2 � q01Þ

2

2d2
ij

" #
; ði; j ¼ x; yÞ;

ð2-4Þ

where Iij are the on-axis intensities, r is the r.m.s. width of the
beam, dij are the r.m.s. widths of the correlations. On substituting
from Eq. (2-4) into Eq. (2-3) and performing the integration one ob-
tains for the elements of the BCP matrix of the beam in the detector
plane the expressions [19]

Jijðq1; q2; zÞ ¼
Iij

D2
ijðzÞ

exp � q2
1 þ q2

2

4r2D2
ijðzÞ

 !
exp � q1 � q2ð Þ2

2d2
ijD

2
ijðzÞ

 !

� exp � ikðq2
1 � q2

2Þ
2RijðzÞ

� �
: ð2-5Þ

Here the beam expansion coefficients D2
ijðzÞ and the curvature coef-

ficients Rij(z) are given by the formulas

D2
ijðzÞ ¼ 1þ z

kr

� 	2 1
4r2 þ

1
d2

ij

 !
; ð2-6Þ

RijðzÞ ¼ z 1þ 1
D2

ijðzÞ

 !
: ð2-7Þ



Fig. 2. Contour plots for the variation of (a) the intensity of the beam (b) the degree
of polarization of the beam (c) the changes in the orientation angle, of a linearly
polarized beam versus the propagation and the transverse distances of a beam
propagating in free space. The parameters of the beam were taken as k = 0.6328 lm,
Ixx = 2.25, Iyy = 1, r = 1 cm, dxx = 0.15 mm, dyy = 0.225 mm, dxy = 0.25 mm and
Ixy = 0.45.
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Now, we will examine the variation of the intensity and of the
polarization properties of the beam with distancezof propagation.
The intensity of the beam at a point P, which is defined by the vec-
tor, r = (q,z) is given by the expression

Iðq; zÞ ¼ Tr Jðq; zÞ; ð2-8Þ

where Tr denotes the trace. The polarization properties of the beam
consist of the degree of polarization and the state of polarization of
the beam. The degree of polarization of the beam is defined by the
formula [20]

Pðq; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Det Jðq; zÞ
½Tr Jðq; zÞ�2

s
; 0 6 P 6 1; ð2-9Þ

where Det denotes the determinant. The state of polarization at any
point within the beam cross-section is characterized by the param-
eters specifying the polarization ellipse (cf. [21]) which can be
determined from the BCP matrix. The orientation angle h of the
polarization ellipse, i.e., the angle which the major axis of the polar-
ization ellipse makes with the x-direction, is given by the formula
(cf. [22])

hðq; zÞ ¼ 1
2

arctan
2Re½Jxyðq; zÞ�

Jxxðq; zÞ � Jyyðq; zÞ

 !
; �p=2 6 h 6 p=2:

ð2-10Þ

The degree of ellipticity of the polarization ellipse can be defined by
the formula [22]

eðq; zÞ ¼ A2ðq; zÞ=A1ðq; zÞ; 0 6 e 6 1; ð2-11Þ

where A1(q,z) and A2(q,z) are the magnitudes of the major and of
the minor semi-axes of the polarization ellipse respectively, given
by the expressions

A1ðq;zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJxx� JyyÞ

2þ4jJxyj
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJxx� JyyÞ

2þ4½ReJxy�
2

q� �1=2
, ffiffiffi

2
p

;

ð2-12aÞ

A2ðq;zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJxx� JyyÞ

2þ4jJxyj
2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJxx� JyyÞ

2þ4½ReJxy�
2

q� �1=2
, ffiffiffi

2
p

:

ð2-12bÞ

In Eqs. (12) the arguments of the BCP matrix elements have been
omitted for simplicity. The degree of ellipticity e(q,z) characterizes
the shape of polarization ellipse; it is unity for circular polarization
and zero for linear polarization.

In Fig. 2 we give an example for the variation of the intensity,
the degree of polarization and the orientation angle of a stochastic
electromagnetic beam versus the propagation distance z from the
plane of the source and also the transverse distance q from the
axial point of the beam as given by Eqs. (2-8)–(2-10). It was
assumed that the propagating stochastic beam was generated by
a linearly polarized Gaussian Schell-model source that has the
parameters Ixx = 2.25, Iyy = 1, r = 1 cm, dxx = 0.15 mm, dyy =
0.225 mm, dxy = 0.25 mm and Ixy = 0.45. From the contour plots
one can readily see that, as the beam propagates sufficiently far
from the source plane, its intensity distribution and also the
distributions of its polarization properties change, and they are
becoming non-uniform across the beam cross-section. This non-
uniformity will impact the required properties of the local oscilla-
tor beam and the detector size. Also, since in a typical detection
system the distance that the detected beam propagates from its
source, say zS, is sufficiently large, i.e., zS/k� 1 (the detected beam
is in its far zone), both its intensity and the polarization properties
of the beam are affected by propagation (they are redistributed
across the detector surface). Therefore, in general, the local oscilla-
tor beam at the detector surface should also exhibit far-zone char-
acteristics, i.e., the distance between its source and the detector;
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say zL should be sufficiently large, viz. zL/k� 1 in such a way that
the parameters of the local oscillator beam should match the cor-
responding parameters of the received beam after propagating a
distance zS from the source plane. In other words, the detection
system might be considered as having allowed (controllable) prop-
agation path between the local oscillator and the detector plane.
Such a system will now be introduced and analyzed.

3. Heterodyne detection of stochastic electromagnetic beams

A schematic diagram for the analyzed detection system is
shown in Fig. 3. Two acousto-optics modulators AOM1 and
gh ¼
R R

D ReRðq1ÞRðq2ÞTr ½JðSÞyðq1; q2; zSÞJðLÞðq1; q2; zLÞ� expðjK � q1 � jK � q2Þd
2q1 d2q2R

D RðqÞTr ½JðLÞðq; q; zLÞ�d2q �
R

D RðqÞTr ½JðSÞðq; q; zSÞ�d2q
: ð3-4Þ
AOM2 can be used to modulate the optical beams with angular fre-
quencies xS and xL in the radio frequency (RF) range. C1 and C2
denote the generators of the random beams, which can be realized
according to the methods proposed by Piquero et al. [23] or Shirai
et al. [24]. Hence, the output of the generators C1 and C2 can be
characterized by the BCP matrices of the correlation pairs with fre-
quencies x + xS and x + xL, where x denotes the optical angular
frequency. Suppose that the distances, which the two beams, the
received and the local oscillator beams, travel to the detector from
generators C1 and C2 are zS and zL, respectively. The expression for
the signal-to-noise ratio (SNR) of the coherent mixing of stochastic
electromagnetic beams, is given in [11] as

SNR ¼
2Re

R R
D Rðq1ÞRðq2ÞTr ½JðSÞyðq1; q2; zSÞJðLÞðq1; q2; zLÞ�d2q1 d2q2

2eB
R

D RðqÞTr ½JðLÞðq; q; zLÞ�d2q
:

ð3-1Þ

where J(S)(q1,q2,zS) and J(L)(q1,q2,zL) are the BCP matrices of the de-
tected beam and the local oscillator beam at the surface of the
detector, Re denotes the real part and dagger denotes the Hermitian
adjoint. In Eq. (3-1), e is the electron charge, B is the bandwidth of
the intermediate frequency (IF) filter and RðqÞ is the responsivity of
the detector at the position q on the detector surface. Eq. (3-1) can
be modified to take into account any misalignment between the
wave-fronts of the two overlapped beams on the detector as given
in [17] hence it can be expressed as
SNR ¼
R R

D 2ReRðq1ÞRðq2ÞTr ½JðSÞyðq1; q2; zSÞJðLÞðq1; q2; zLÞ� expðjK � q1 � jK � q2Þd
2q1 d2q2

2eB
R

D RðqÞTr ½JðLÞðq; q; zLÞ�d2q
; ð3-2Þ
where K is the wave vector of the received signal, assuming that
the local oscillator is propagating in a direction normal to the
detector as shown in Fig. 4. Sometimes it is more appropriate to
define a normalized SNR, a quantity that does not depend on the
detector parameters in general but depends on the parameters
of the overlapped beams only. For stochastic electromagnetic
beams mixing one can define the normalized SNR by the formula
SNR� ¼
R R

D ReTr ½JðSÞyðq1; q2; zSÞJðLÞðq1; q2; zLÞ� expðjK � q1 � jK � q2Þd
2q1 d2q2R

D Tr ½JðLÞðq; q; zLÞ�d2q
; ð3-3Þ
where we assumed that the responsivity does not vary with the
position on the detector. Then RðqÞ ¼ R ¼ egq

hm at different positions,
where gq is the quantum efficiency of the photo-surface, h is the
Planck’s constant, and t is the optical frequency [1]. We note that
the normalized SNR has the units (J Hz) and does not depend on
some of the detector parameters.

To evaluate the performance of the coherent detection system
in this case and to show the effect of the variation of different
parameters on the detection process, it is convenient to use
the heterodyne efficiency as a metric for the quality of the
system. Following the same procedure as in [17] one could
extend the definition of the heterodyne efficiency to the case
of stochastic electromagnetic beams to be written in the
form
This equation reduces to the corresponding equation of the sca-
lar beams mixing demonstrated in [17] when it has been applied
to the scalar beams mixing. Eq. (3-4) has maximum value when
two co-aligned fully polarized electromagnetic beams are mixed
together. Assuming that the responsivity is constant across the
detector, the corresponding expression for the heterodyne effi-
ciency of the electromagnetic beams can be defined by the
formula

gh¼
R R

D ReTr½JðSÞyðq1;q2;zSÞJðLÞðq1;q2;zLÞ�expðjK �q1� jK �q2Þd
2q1 d2q2R

D Tr½JðLÞðq;q;zLÞ�d2q �
R

D Tr½JðSÞðq;q;zSÞ�d2q
:

ð3-5Þ

From Eqs. (3-3) and (3-5) one can relate the heterodyne efficiency
to the normalized SNR, when the responsivity of the detector does
not depend on the position, by the formula

gh ¼
SNR�R

D Tr ½JðSÞðq; q; zsÞ�d2q
: ð3-6Þ

As is evident from Eq. (3-5) the heterodyne efficiency can also be re-
garded as representing reduction of the optimum incoherent power
upon mixing two beams coherently on a detector surface [25]. In
the next section we give an analytical solution for this equation
when the two overlapping beams belong to the broad class of
Gaussian Schell-model (GSM).
4. Heterodyne detection of partially polarized Gaussian Schell-
model beams

When both the received beam and the local oscillator beam be-
long to a class of partially polarized, Gaussian Schell-model beams
[20], an expression for the heterodyne efficiency can readily be de-
rived. Suppose that the BCP matrices of the detected beam and the
local oscillator beam at the detector surface have the elements (see
Eqs. (2-5)–(2-7))
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JðaÞij ðq1; q2; zÞ ¼
IðaÞij

DðaÞ2ij ðzÞ
exp � q2

1 þ q2
2

4rðaÞ2DðaÞ2ij ðzÞ

 !
exp � tðq1 � q2Þ

2

2dðaÞ2ij DðaÞ2ij ðzÞ

 !

� exp � ikðq2
1 � q2

2Þ
2RðaÞij ðzÞ

 !
; ða ¼ S; LÞ; ði; j ¼ x; yÞ;

ð4-1Þ

where superscripts (S) and (L) stand for the detected (signal) beam
and the local oscillator beam. Formula (3-5) can be re-written in the
form

gh ¼
P

i;j¼x;yPcijP
i¼x;yPdðLÞii

h i
�
P

i¼x;yPdðSÞii

h i ; ð4-2Þ

where the coherent power of the heterodyne mixing Pcij and the
incoherent power PdðaÞii are given by the expressions

Pcij ¼
Z Z

D
ReJðSÞ�ij ðq1; q2; zSÞJðLÞij ðq1; q2; zLÞ

� expðjK � q1 � jK � q2Þd
2q1 d2q2; ði; jÞ ¼ ðx; yÞ ð4-3Þ

and

PdðaÞii ¼
Z

D
Jaiiðq; q; zLOÞd2q; ði ¼ x; yÞ; a ¼ ðL; SÞ: ð4-4Þ

In Eqs. (4-3) and (4-4) the symbol D indicates that the integration
extends over the area of the detector with a hard-aperture of diam-
eter D. In order to simplify the integration and following Ref. [3], it
is reasonable to approximate the diameter of the hard aperture D by
an aperture of radius W, sometimes called Gaussian or ‘‘soft” aper-
ture, using the relation

W2 ¼ D2=8: ð4-5Þ

Next, by multiplying the integrand by the exponential cut-off factor
exp½�ðq2

1 þ q2
2Þ=W2� and extending the integration to infinity (cf.

[3]), one can rewrite Eqs. (4-3) and (4-4) in the forms

Pij ¼ 2Re
Z Z

W
JðSÞ�ji ðq1; q2; zSÞJðLÞij ðq1; q2; zLÞ exp �q2

1 þ q2
2

W2

� �

� expðjK � q1 � jK � q2Þd
2q1 d2q2; ði; j ¼ x; yÞ ð4-6Þ

and

PdðaÞii ¼
Z

W
JðaÞii ðq; q; zaÞ exp � q2

W2

� �
d2q; ði ¼ x; yÞ and a ¼ ðL; SÞ:

ð4-7Þ

Using the approximation given by Eq. (4-5) and assuming that the
angle h between the wave fronts of the two overlapped beams illus-
trated in Fig. 4, is very small, hence K � q � kqhcos(/), an analytic
expression for the heterodyne efficiency can be derived as indicated
in Appendix A. It follows from Appendix A that the analytical
expressions for the coherent power of the heterodyne mixing Pcij

and the incoherent power PdðaÞii are given by

Pcij ¼ ð2pÞ2
IðSÞij

DðSÞ2ij

IðLÞij

DðLÞ2ij

e�
F2

4c2=2c2

� �
e�

F2þb2
1

4c1 =2c1

 !
e
� Fb1

c1

� 	
;

ði; jÞ ¼ ðx; yÞ; ð4-8Þ

where

c2 ¼ aij � ibij; ð4-9Þ

g ¼ 2cij; ð4-10Þ

c1 ¼ ðaij þ ibijÞ þ
g2

4c2
; ð4-11Þ

b1 ¼
gF
2c2

; ð4-12Þ

aij ¼
1

DðSÞ2ij

1
4rðSÞ2

þ 1

2dðSÞ2ij

 !

þ 1

DðLÞ2ij

1
4rðLÞ2

þ 1

2dðLÞ2ij

 !
þ 1

W2 ; ð4-13Þ

bij ¼
k
2

1

RðLÞij

� 1

RðSÞij

 !
; ð4-14Þ

cij ¼
1

dðSÞ2ij DðSÞ2ij

þ 1

dðLÞ2ij DðLÞ2ij

; ð4-15Þ

F ¼ kh: ð4-16Þ

and

Pda
ii ¼

2pðIaii=D
ðaÞ2
ii Þ

2 1
2rðaÞ2

ii

þ 1
W2

� � ; ði; jÞ ¼ ðx; yÞ; a ¼ ðL; SÞ: ð4-17Þ

We discussed the effect of the angular phase shift h on the detection
efficiency of beams of any state of coherence in another publication
previously [17]. In this paper we study the effects due to propaga-
tion of electromagnetic beams; hence we consider that the two
beams are co-aligned on the detector surface.
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5. Results and discussion

In the following we compute the variation of the heterodyne
efficiency of the coherent mixing of two stochastic beams as a
function of the aperture size of the detector using Eq. (4-2). The ef-
fects of the parameters of the overlapping beams on the mixing
efficiency are discussed. We begin our investigations by checking
the effect of the wave-front curvature of the propagating beams
on the heterodyne efficiency. For this purpose we consider the
mixing of two scalar and coherent beams on the detector surface.
The received beam was assumed to be scalar and coherent one
with k = 0.6328 lm and has 5 cm intensity width (rS), we assumed
also that the beam propagated in free space for several distances
(0, 1 m, 10 m). The local oscillator was chosen to be scalar and
coherent with k = 0.6328 lm, 5 cm intensity width and propagat-
ing in free space also. We assumed first that the local oscillator
has planar wave-front and we checked the effect of the variation
in the propagation distance of the received beam on the hetero-
dyne efficiency as shown in Fig. 5a. One could see that when
zS = 0 (i.e., the received beam did not propagate) the two beams
were in match and the heterodyne efficiency was unity and for
small propagation distances the mismatch between the two over-
lapped beam was large and hence the heterodyne efficiency was
less than the case of the longer propagation distance. In Fig. 5b
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Fig. 5. Variation of the heterodyne efficiency (gh) with the detector radius, the
received beam was assumed to be scalar and coherent with k = 0.6328 lm and has
5 cm intensity width (r) and propagating for a distance 0, 1 m, 10 m in free space.
The local oscillator was chosen to be scalar and coherent with k = 0.6328 lm, 5 cm
intensity width and propagating for a distance (a) 0 (b) 1 m in free space.
we show the effect of the propagation of the local oscillator beam
itself on the heterodyne efficiency, where we assumed zL = 1 m.
One can see that the mixing efficiency has been decreased due to
the wave-front curvature of the local oscillator beam. As is well-
known it is possible, by using a suitable lens system and adjusting
the lengths before and after the lens, to compensate the wave-front
curvature by the added phase from the lens [26]. We showed the
importance of equalizing the phase of the propagating beams
and next we will drop the effect of this wave-front curvature,
assuming that the wave-front curvature has been corrected by
using suitable optics in the detection system.

Next, we consider the detection of unpolarized, partially coher-
ent beams that propagate in free space. The results for this case are
shown in Fig. 6. The received beam was assumed to be unpolarized
with k = 0.6328 lm, 5 cm intensity width (rS), ISxx = ISyy = 0.1,
dSxx = 0.1 mm, dSyy = 0.5 mm, we assumed also that the beam prop-
agated in free space for several distances (0, 100 m, 1000 m). The
local oscillator parameters were chosen as k = 0.6328 lm, ILxx = 1,
ILyy = 1, rL = 5 cm and we considered that the correlation widths
are taking different values. In Fig. 6 we assumed that the local
oscillator was fully coherent (dLxx = dLyy =1) and has correlations
in two orthogonal directions. As one can see, the heterodyne effi-
ciency in this case does not exceed the value 0.5 and it increases
as the propagation distance of the received beam increases, hence
according to van-Cittert Zernike theorem the coherence of the
beam increases upon propagation in free space [26]. Then the
matching between the two overlapping beams will increase. We
checked also the effect of decreasing the correlation widths of
the local oscillator beam, the heterodyne efficiency trend was the
same as in Fig. 6 when we decreased the correlation widths to
dLxx = dLyy = 5 mm. The results show that we could relax the
requirement of the coherence of the local oscillator as long as its
correlation width is at least 10 times larger than the corresponding
correlation width of the received beam.

Finally, we checked the case of the detection of partially polar-
ized, partially coherent beams as given in Fig. 7. The parameters of
the received beam were assumed to be k = 0.6328 lm, rS = 5 cm,
ISxx = ISyy = 0.5, ISxy = 0.125, dSxx = dSyy = 0.1 mm, dSxy = 0.5 mm, we
assumed also that the beam propagated in free space for several
distances (0, 100 m, 1000 m). The local oscillator parameters were
chosen as k = 0.6328 lm, ILxx = ILyy = ILxy = 5, rL = 5 cm and we con-
sidered that correlation widths are equal as the case for the fully
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

zS = 0 
zS = 100 m
zS = 1000 m

Detector radius [mm]

η h

Fig. 6. Variation of the heterodyne efficiency (gh) with the detector radius. The
received beam was assumed to be unpolarized with k = 0.6328 lm, 5 cm intensity
width (rS), ISxx = ISyy = 0.1, dSxx = 0.1 mm, dSyy = 0.5 mm and propagating for a
distance 0, 100 m, 1000 m in free space. The local oscillator parameters were
chosen as k = 0.6328 lm, ILxx = 1, ILyy = 1, rL = 5 cm and dLxx = dLyy =1.
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Fig. 7. Variation of the heterodyne efficiency (gh) with the detector radius. The
parameters of the received beam were assumed to be k = 0.6328 lm, rS = 5 cm,
ISxx = ISyy = 0.5, ISxy = 0.125, dSxx = dSyy = 0.1 mm, dSxy = 0.5 mm and propagating dis-
tance zS = 0, 100 m, 1000 m in free space. The local oscillator parameters were
chosen as fully polarized beam has k = 0.6328 lm, ILxx = ILyy = ILxy = 5, rL = 5 cm and
(a) dLxx = dLyy = dLxy =1 (b) dLxx = dLyy = dLxy = 0.5 mm.
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polarized GSM beam but they are taking different values in each
figure. In Fig. 7a we assumed that the local oscillator is coherent
as we chose dLxx = dLyy = dLxy =1. One can see that as the beam
propagate in free-space the heterodyne efficiency becomes more
homogeneous over larger aperture size but its magnitude reduces
due to free-space diffraction. The aperture averaging does not im-
prove the performance of the detection system as shown. We
checked also the effect of decreasing the correlation widths of
the local oscillator beam, the heterodyne efficiency trend was the
same as in Fig. 7a when we decreased the correlation widths to
dLxx = dLyy = 5 mm. Hence one could relax the requirement of the
coherence of the local oscillator by using a suitable partially coher-
ent beam. In Fig. 7b we assumed that dLxx = dLyy = dLxy = 0.5 mm. As
is clear in the figure the heterodyne efficiency decreased signifi-
cantly with respect to the results seen previously in Fig. 7a. One
can see that, when we decreased the correlation widths of the local
oscillator to unacceptable degree, as in this example, the hetero-
dyne efficiency deteriorated drastically.

6. Conclusions

An expression for the heterodyne efficiency of mixing two sto-
chastic electromagnetic beams with a small angular shift between
their propagation directions has been derived as a measure for the
quality of the coherent mixing of such beams. The effect of the
change of the beams parameters in free-space has been considered.
We derived an analytical expression for the heterodyne efficiency
for the case of mixing two stochastic electromagnetic Gaussian
Schell-model (GSM) beams. The numerical examples demonstrate
that the heterodyne efficiency of the coherent detection could be
adjusted by controlling the corresponding parameters of the local
oscillator beam parameters. We have also shown by some exam-
ples that the optimal values for the parameters of the local oscilla-
tor beam depend on specific characteristics of the detected beam.
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Appendix A

In this Appendix we give details of the analytical solution for
the heterodyne efficiency of GSM beams. We begin by performing
the integration

Pcij ¼
2IðSÞij IðLÞij

DðSÞ2ij DðLOÞ2
ij

Re
Z Z

W
exp � q2

1 þ q2
2

4rðSÞ2DðSÞ2ij

 !
exp � ðq1 � q2Þ

2

2dðSÞ2ij DðSÞ2ij

 !

� exp
ikðq2

1 � q2
2Þ

2RðSÞij

 !
exp � q2

1 þ q2
2

4rðLÞ2DðLÞ2ij

 !
exp � q1 � q2ð Þ2

2dðLÞ2ij DðLÞ2ij

 !

� exp � ikðq2
1 � q2

2Þ
2RðLÞij

 !
exp �q2

1 þ q2
2

W2

� �

� exp jðK � q1 � jK � q2Þd
2q1 d2q2; ði; j ¼ x; yÞ: ðA1Þ

This formula can be compactly written as

Pcij ¼
2IðSÞij IðLÞij

DðSÞ2ij DðLÞ2ij

Re
Z

W
exp½�ðaij þ ibijÞq2

1�q1 d/1 dq1

�
Z

W
exp½�ðaij � ibijÞq2

2� exp½cijq1q2 cosð/1 � /2Þ�

� expðjkq1h cos /1 � jkq2h cos /2Þq2 d/2 dq2; ði; j ¼ x; yÞ;
ðA2Þ

where the coefficients aij, bij and cij are

aij ¼
1

DðSÞ2ij

1
4rðSÞ2

þ 1

2dðSÞ2ij

 !

þ 1

DðLÞ2ij

1
4rðLÞ2

þ 1

2dðLÞ2ij

 !
þ 1

W2 ; ðA3Þ

bij ¼
k
2

1

RðLÞij

� 1

RðSÞij

 !
; ðA4Þ

cij ¼
1

dðSÞ2ij DðSÞ2ij

þ 1

dðLÞ2ij DðLÞ2ij

: ðA5Þ

Let us denote also F = kh, F
0
= ikh and Cij = cijq1q2. The integration

may be written as

Pcij¼
Z 1

q1¼0

Z 1

q2¼0

Z 2p

/2¼0

Z 2p

/1¼0
Re½IðSÞij IðLÞij e�ðaijþibijÞq2

1 e�ðaij�ibijÞq2
2 eCij cosð/1�/2Þ�

� ½eF 0ðq1 cos/1�q2 cos/2Þ�q1q2 d/1 d/2 dq2 dq1: ðA6Þ
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To evaluate Pcij, we perform the integration over /1 and by rearrang-
ing the terms of Pcij one finds

I ¼
Z 1

q1¼0

Z 1

q2¼0

Z 2p

/2¼0
Re½IðSÞij IðLÞij e�ðaijþibijÞq2

1 e�ðaij�ibijÞq2
2 e�F0q2 cos /2 �

� q1q2 d/2 dq2 dq1

Z 2p

/1¼0
e½cos /1ðCij cos /2þF 0q1Þ�sin /1ðCij sin /2Þ� d/1:

ðA7Þ

Using the identities ([27,28])Z 2p

/¼0
e½a cos /þb sin /� d/ ¼ 2pI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q� �
; ðA8Þ

I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þM2 � 2MN cosð/2 � wÞ

q� �

¼
X1
�1
ð�1ÞmImðNÞImðMÞ cos mð/2 � wÞ; ðA9Þ

where Im is the modified Bessel function of order m and w = p. The
integration gives

Pcij ¼ 2p
X1
�1
ð�1Þm

Z 1

q1¼0

Z 1

q2¼0
Re½IðSÞij IðLÞij e�ðaijþibijÞq2

1 e�ðaij�ibijÞq2
2 �

� ImðCijÞImðF 0q1Þq1q2 dq2 dq1

�
Z 2p

/2¼0
e½F

0q2 cos /2 � cos mð/2 � wÞd/2: ðA10Þ

By using the identity [28]

Z 2p

/¼0
e½a cos /þb sin /� cos mð/� wÞd/ ¼ 2pImð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
Þ cos mð/� nÞ;

ðA11Þ

where n ¼ tan�1ðbaÞ, the integral becomes

Pcij ¼ ð2pÞ2
X1
�1
ð�1Þm cosðmwÞ

�
Z 1

q1¼0

Z 1

q2¼0
Re½IðSÞij IðLÞij e�ðaijþibijÞq2

1 e�ðaij�ibijÞq2
2 �ImðCijÞImðF 0q1Þ

� ImðF 0q2Þq1q2 dq2 dq1: ðA12Þ

By substituting the value of the modified Bessel function of order m
in terms of Bessel function [27] one has

ImðF 0q1Þ ¼ j�mJmð�Fq1Þ; ðA13Þ

ImðF 0q2Þ ¼ j�mJmð�Fq2Þ: ðA14Þ

The integral can be written as

Pcij¼ð2pÞ2IðSÞij IðLÞij

X1
�1
ð�1Þm cosðmwÞ

Z 1

q1¼0
Ree�ðaijþibijÞq2

1 Jmð�Fq1Þq1 dq1

�
Z 1

q2¼0
q2e�ðaij�ibijÞq2

2 JmðFq2ÞImð2cijq1q2Þdq2: ðA15Þ

The integration over q2 can be performed by using the identity [29]Z 1

x¼0
xe�ax2

IlðcxÞdx ¼ 1
2a

e
ðb2�c2 Þ

4a Jl
bc
2a

� �
: ðA16Þ

The integral becomes

Pcij ¼ ð2pÞ2IðSÞij IðLÞij e�
F02
4c2=2c2

� � X1
m¼�1

ð�1Þm cosðmwÞ
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4c2
Þq2

1 Jmð�Fq1ÞJm � gF
2c2
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q1 dq1; ðA17Þ
where

c2 ¼ aij � ibij; ðA18Þ
g ¼ 2cij: ðA19Þ

The integration over r1 can be performed, using the identity [29]Z 1

x¼0
xe�l

2x2
JlðaxÞJlðbxÞdx ¼ 1

2l2 e
ða2þb2Þ

4l2 Il
bc

2l2

� �
; ðA20Þ

and one finds that

Pcij ¼ ð2pÞ2IðSÞij IðLÞij e�
F2

4c2

� �
2c2

�
e�

F2þb2
1

4c1

 ,
2c1

!

�
X1

m¼�1
ð�1Þm cosðmwÞIm

Fb1

c1

� �
; ðA21Þ

where

c1 ¼ ðaij þ ibijÞ þ
g2

4c2
; ðA22Þ

b1 ¼
gF
2c2

: ðA23Þ

Finally using the identity [28]

X1
m¼�1

ð�1ÞmIm
Fb1

c1

� �
cosðmwÞ ¼ e

Fb1
c1

cosðwÞ
: ðA24Þ

The integral Pcij can be written in closed form

Pcij ¼ ð2pÞ2IðSÞij IðLÞij e�
F2

4c2

�
2c2

� �
e�

F2þb2
1

4c1

,
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 !
e
� Fb1

c1

� 	
: ðA25Þ

The integrals in the denominator of Eq. (22) take the form

Pd ¼
Z 2p

/¼0

Z 1

q¼0
Cðq; qÞe�

q2

W2qdqd/: ðA26Þ

For Gaussian mutual coherence function case, one expresses the
integral as follows:

Pd ¼
Z 2p

/¼0

Z 1

q¼0
Ie�ð

q2

2r2Þe�
q2

W2qdqd/: ðA27Þ

Integrating over / one finds that

Pd ¼ 2pI
Z 1

q¼0
e�ð

q2

2r2Þe�
q2

W2qdqd/: ðA28Þ

The integration over r can be performed using the identity [29]Z 1

x¼0
xe�l

2x2
dx ¼ 1

2l2 : ðA29Þ

Hence the integral can be expressed in closed form as

Pd ¼
2pI

2 1
2r2 þ 1

W2

h i : ðA30Þ
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