Contents

Preface to the Second Edition
Preface to the First Edition
Acknowledgments

1 INTRODUCTION

OVERVIEW
Introduction
Definition of the Laser
Simplicity of a Laser
Unique Properties of a Laser
The Laser Spectrum and Wavelengths
A Brief History of the Laser
Overview of the Book

SECTION 1. FUNDAMENTAL WAVE PROPERTIES OF LIGHT

2 WAVE NATURE OF LIGHT – THE INTERACTION OF LIGHT WITH MATERIALS

OVERVIEW
2.1 Maxwell’s Equations
2.2 Maxwell’s Wave Equations

Maxwell’s Wave Equations for a Vacuum
Solution of the General Wave Equation – Equivalence of Light and Electromagnetic Radiation
Wave Velocity – Phase and Group Velocities
Generalized Solution of the Wave Equation
Transverse Electromagnetic Waves and Polarized Light
Flow of Electromagnetic Energy
Radiation from a Point Source (Electric Dipole Radiation)

2.3 Interaction of Electromagnetic Radiation (Light) with Matter

Speed of Light in a Medium
Maxwell’s Equations in a Medium
Application of Maxwell’s Equations to Dielectric Materials – Laser Gain Media
Complex Index of Refraction – Optical Constants
Absorption and Dispersion
CONTENTS

Estimating Particle Densities of Materials for Use in the Dispersion Equations 34

2.4 Coherence 36
 Temporal Coherence 37
 Spatial Coherence 38

REFERENCES 39

PROBLEMS 39

SECTION 2. FUNDAMENTAL QUANTUM PROPERTIES OF LIGHT

3 PARTICLE NATURE OF LIGHT – DISCRETE ENERGY LEVELS 45

OVERVIEW 45

3.1 Bohr Theory of the Hydrogen Atom 45
 Historical Development of the Concept of Discrete Energy Levels 45
 Energy Levels of the Hydrogen Atom 46
 Frequency and Wavelength of Emission Lines 49
 Ionization Energies and Energy Levels of Ions 51
 Photons 54

3.2 Quantum Theory of Atomic Energy Levels 54
 Wave Nature of Particles 54
 Heisenberg Uncertainty Principle 56
 Wave Theory 56
 Wave Functions 57
 Quantum States 57
 The Schrödinger Wave Equation 59
 Energy and Wave Function for the Ground State of the Hydrogen Atom 61
 Excited States of Hydrogen 63
 Allowed Quantum Numbers for Hydrogen Atom Wave Functions 66

3.3 Angular Momentum of Atoms 67
 Orbital Angular Momentum 67
 Spin Angular Momentum 68
 Total Angular Momentum 69

3.4 Energy Levels Associated with One-Electron Atoms 70
 Fine Structure of Spectral Lines 70
 Pauli Exclusion Principle 72

3.5 Periodic Table of the Elements 72
 Quantum Conditions Associated with Multiple Electrons Attached to Nuclei 72
 Shorthand Notation for Electronic Configurations of Atoms Having More Than One Electron 76

3.6 Energy Levels of Multi-Electron Atoms 77
 Energy-Level Designation for Multi-Electron States 77
 Russell–Saunders or \(LS \) Coupling – Notation for Energy Levels 78
 Energy Levels Associated with Two Electrons in Unfilled Shells 79
 Rules for Obtaining \(S, L, \) and \(J \) for \(LS \) Coupling 82
 Degeneracy and Statistical Weights 84
 \(j-j \) Coupling 85
 Isoelectronic Scaling 85
4 RADIATIVE TRANSITIONS AND EMISSION LINEWIDTH

OVERVIEW

- Radiative Decay of Excited States of Isolated Atoms – Spontaneous Emission
- Spontaneous Emission Decay Rate – Radiative Transition Probability
- Lifetime of a Radiating Electron – The Electron as a Classical Radiating Harmonic Oscillator
- Nonradiative Decay of the Excited States – Collisional Decay

4.1 Decay of Excited States

- Radiative Decay of Excited States of Isolated Atoms – Spontaneous Emission
- Spontaneous Emission Decay Rate – Radiative Transition Probability
- Lifetime of a Radiating Electron – The Electron as a Classical Radiating Harmonic Oscillator
- Nonradiative Decay of the Excited States – Collisional Decay

4.2 Emission Broadening and Linewidth Due to Radiative Decay

- Classical Emission Linewidth of a Radiating Electron
- Natural Emission Linewidth as Deduced by Quantum Mechanics (Minimum Linewidth)

4.3 Additional Emission-Broadening Processes

- Broadening Due to Nonradiative (Collisional) Decay
- Broadening Due to Dephasing Collisions
- Amorphous Crystal Broadening
- Doppler Broadening in Gases
- Voigt Lineshape Profile
- Broadening in Gases Due to Isotope Shifts
- Comparison of Various Types of Emission Broadening

4.4 Quantum Mechanical Description of Radiating Atoms

- Electric Dipole Radiation
- Electric Dipole Matrix Element
- Electric Dipole Transition Probability
- Oscillator Strength
- Selection Rules for Electric Dipole Transitions Involving Atoms with a Single Electron in an Unfilled Subshell
- Selection Rules for Radiative Transitions Involving Atoms with More Than One Electron in an Unfilled Subshell
- Parity Selection Rule
- Inefficient Radiative Transitions – Electric Quadrupole and Other Higher-Order Transitions

5 ENERGY LEVELS AND RADIATIVE PROPERTIES OF MOLECULES, LIQUIDS, AND SOLIDS

OVERVIEW

- Molecular Energy Levels and Spectra
- Energy Levels of Molecules
- Classification of Simple Molecules
- Rotational Energy Levels of Linear Molecules
- Rotational Energy Levels of Symmetric-Top Molecules
- Selection Rules for Rotational Transitions
Vibrational Energy Levels 143
Selection Rule for Vibrational Transitions 143
Rotational–Vibrational Transitions 144
Probabilities of Rotational and Vibrational Transitions 148
Electronic Energy Levels of Molecules 149
Electronic Transitions and Associated Selection Rules of Molecules 150
Emission Linewidth of Molecular Transitions 150
The Franck–Condon Principle 151
Excimer Energy Levels 152

5.2 Liquid Energy Levels and Their Radiation Properties 153
Structure of Dye Molecules 153
Energy Levels of Dye Molecules 155
Excitation and Emission of Dye Molecules 156
Detrimental Triplet States of Dye Molecules 157

5.3 Energy Levels in Solids – Dielectric Laser Materials 158
Host Materials 158
Laser Species – Dopant Ions 159
Narrow-Linewidth Laser Materials 161
Broadband Tunable Laser Materials 166
Broadening Mechanism for Solid-State Lasers 168

5.4 Energy Levels in Solids – Semiconductor Laser Materials 168
Energy Bands in Crystalline Solids 168
Energy Levels in Periodic Structures 170
Energy Levels of Conductors, Insulators, and Semiconductors 172
Excitation and Decay of Excited Energy Levels – Recombination Radiation 173
Direct and Indirect Bandgap Semiconductors 174
Electron Distribution Function and Density of States in Semiconductors 175
Intrinsic Semiconductor Materials 179
Extrinsic Semiconductor Materials – Doping 179
p–n Junctions – Recombination Radiation Due to Electrical Excitation 182
Heterojunction Semiconductor Materials 184
Quantum Wells 186
Variation of Bandgap Energy and Radiation Wavelength with Alloy Composition 191
Recombination Radiation Transition Probability and Linewidth 195

REFERENCES 195

PROBLEMS 195

6 RADIATION AND THERMAL EQUILIBRIUM – ABSORPTION AND STIMULATED EMISSION 199

OVERVIEW 199

6.1 Equilibrium 199
Thermal Equilibrium 199
Thermal Equilibrium via Conduction and Convection 200
Thermal Equilibrium via Radiation 200
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENTS</td>
<td>xi</td>
</tr>
<tr>
<td>6.2 Radiating Bodies</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Stefan–Boltzmann Law</td>
</tr>
<tr>
<td></td>
<td>Wien’s Law</td>
</tr>
<tr>
<td></td>
<td>Irradiance and Radiance</td>
</tr>
<tr>
<td>6.3 Cavity Radiation</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Counting the Number of Cavity Modes</td>
</tr>
<tr>
<td></td>
<td>Rayleigh–Jeans Formula</td>
</tr>
<tr>
<td></td>
<td>Planck’s Law for Cavity Radiation</td>
</tr>
<tr>
<td></td>
<td>Relationship between Cavity Radiation and Blackbody Radiation</td>
</tr>
<tr>
<td></td>
<td>Wavelength Dependence of Blackbody Emission</td>
</tr>
<tr>
<td>6.4 Absorption and Stimulated Emission</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>The Principle of Detailed Balance</td>
</tr>
<tr>
<td></td>
<td>Absorption and Stimulated Emission Coefficients</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>221</td>
</tr>
<tr>
<td>PROBLEMS</td>
<td>221</td>
</tr>
</tbody>
</table>

SECTION 3. LASER AMPLIFIERS

7 CONDITIONS FOR PRODUCING A LASER – POPULATION INVERSIONS, GAIN, AND GAIN SATURATION | 225 |
OVERVIEW	225	
7.1 Absorption and Gain	225	
	Absorption and Gain on a Homogeneously Broadened Radiative Transition (Lorentzian Frequency Distribution)	225
	Gain Coefficient and Stimulated Emission Cross Section for Homogeneous Broadening	229
	Absorption and Gain on an Inhomogeneously Broadened Radiative Transition (Doppler Broadening with a Gaussian Distribution)	230
	Gain Coefficient and Stimulated Emission Cross Section for Doppler Broadening	231
	Statistical Weights and the Gain Equation	232
	Relationship of Gain Coefficient and Stimulated Emission Cross Section to Absorption Coefficient and Absorption Cross Section	233
7.2 Population Inversion (Necessary Condition for a Laser)	234	
7.3 Saturation Intensity (Sufficient Condition for a Laser)	235	
7.4 Development and Growth of a Laser Beam	238	
	Growth of Beam for a Gain Medium with Homogeneous Broadening	238
	Shape or Geometry of Amplifying Medium	241
	Growth of Beam for Doppler Broadening	244
7.5 Exponential Growth Factor (Gain)	245	
7.6 Threshold Requirements for a Laser	247	
	Laser with No Mirrors	247
	Laser with One Mirror	248
	Laser with Two Mirrors	249
REFERENCES	253	
PROBLEMS	253	
CONTENTS

8 LASER OSCILLATION ABOVE THRESHOLD 255

OVERVIEW 255

8.1 Laser Gain Saturation 255
 Rate Equations of the Laser Levels That Include Stimulated Emission 255
 Population Densities of Upper and Lower Laser Levels with Beam Present 256
 Small-Signal Gain Coefficient 257
 Saturation of the Laser Gain above Threshold 257

8.2 Laser Beam Growth beyond the Saturation Intensity 258
 Change from Exponential Growth to Linear Growth 258
 Steady-State Laser Intensity 261

8.3 Optimization of Laser Output Power 261
 Optimum Output Mirror Transmission 261
 Optimum Laser Output Intensity 264
 Estimating Optimum Laser Output Power 264

8.4 Energy Exchange between Upper Laser Level Population and Laser Photons 266
 Decay Time of a Laser Beam within an Optical Cavity 267
 Basic Laser Cavity Rate Equations 268
 Steady-State Solutions below Laser Threshold 270
 Steady-State Operation above Laser Threshold 272

8.5 Laser Output Fluctuations 273
 Laser Spiking 273
 Relaxation Oscillations 276

8.6 Laser Amplifiers 279
 Basic Amplifier Uses 279
 Propagation of a High-Power, Short-Duration Optical Pulse through an Amplifier 280
 Saturation Energy Fluence 282
 Amplifying Long Laser Pulses 284
 Amplifying Short Laser Pulses 284
 Comparison of Efficient Laser Amplifiers Based upon Fundamental Saturation Limits 285
 Mirror Array and Resonator (Regenerative) Amplifiers 285

REFERENCES 288
PROBLEMS 288

9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS 290

OVERVIEW 290

9.1 Inversions and Two-Level Systems 290

9.2 Relative Decay Rates – Radiative versus Collisional 292

9.3 Steady-State Inversions in Three- and Four-Level Systems 293
 Three-Level Inversions in Three- and Four-Level Systems 295
 Three-Level Laser with the Intermediate Level as the Upper Laser Level 295
 Three-Level Laser with the Upper Laser Level as the Highest Level 298
 Four-Level Laser 301

9.4 Transient Population Inversions 304
CONTENTS

9.5 Processes That Inhibit or Destroy Inversions 307
- Radiation Trapping in Atoms and Ions 308
- Electron Collisional Thermalization of the Laser Levels in Atoms and Ions 311
- Comparison of Radiation Trapping and Electron Collisional Mixing in a Gas Laser 315
- Absorption within the Gain Medium 316
REFERENCES 319
PROBLEMS 319

10 LASER PUMPING REQUIREMENTS AND TECHNIQUES 322
OVERVIEW 322
10.1 Excitation or Pumping Threshold Requirements 322
10.2 Pumping Pathways 324
- Excitation by Direct Pumping 324
- Excitation by Indirect Pumping (Pump and Transfer) 327
- Specific Pump-and-Transfer Processes 330
10.3 Specific Excitation Parameters Associated with Optical Pumping 339
- Pumping Geometries 339
- Pumping Requirements 342
- A Simplified Optical Pumping Approximation 344
- Transverse Pumping 346
- End Pumping 348
- Diode Pumping of Solid-State Lasers 350
- Characterization of a Laser Gain Medium with Optical Pumping (Slope Efficiency) 352
10.4 Specific Excitation Parameters Associated with Particle Pumping 355
- Electron Collisional Pumping 355
- Heavy Particle Pumping 359
- A More Accurate Description of Electron Excitation Rate to a Specific Energy Level in a Gas Discharge 359
- Electrical Pumping of Semiconductors 361
REFERENCES 363
PROBLEMS 364

SECTION 4. LASER RESONATORS

11 LASER CAVITY MODES 371
OVERVIEW 371
11.1 Introduction 371
11.2 Longitudinal Laser Cavity Modes 372
- Fabry–Perot Resonator 372
- Fabry–Perot Cavity Modes 379
- Longitudinal Laser Cavity Modes 380
- Longitudinal Mode Number 380
- Requirements for the Development of Longitudinal Laser Modes 382
CONTENTS

11.3 Transverse Laser Cavity Modes 384
 Fresnel–Kirchhoff Diffraction Integral Formula 385
 Development of Transverse Modes in a Cavity with Plane-Parallel Mirrors 386
 Transverse Modes Using Curved Mirrors 390
 Transverse Mode Spatial Distributions 391
 Transverse Mode Frequencies 392
 Gaussian-Shaped Transverse Modes within and beyond the Laser Cavity 393
11.4 Properties of Laser Modes 396
 Mode Characteristics 396
 Effect of Modes on the Gain Medium Profile 397
REFERENCES 399
PROBLEMS 399

12 STABLE LASER RESONATORS AND GAUSSIAN BEAMS 402
OVERVIEW 402
12.1 Stable Curved Mirror Cavities 402
 Curved Mirror Cavities 402
 ABCD Matrices 404
 Cavity Stability Criteria 406
12.2 Properties of Gaussian Beams 410
 Propagation of a Gaussian Beam 411
 Gaussian Beam Properties of Two-Mirror Laser Cavities 412
 Properties of Specific Two-Mirror Laser Cavities 417
 Mode Volume of a Hermite–Gaussian Mode 421
12.3 Properties of Real Laser Beams 423
12.4 Propagation of Gaussian Beams Using ABCD Matrices – Complex Beam Parameter 425
 Complex Beam Parameter Applied to a Two-Mirror Laser Cavity 428
REFERENCES 432
PROBLEMS 432

13 SPECIAL LASER CAVITIES AND CAVITY EFFECTS 434
OVERVIEW 434
13.1 Unstable Resonators 434
13.2 Q-Switching 439
 General Description 439
 Theory 441
 Methods of Producing Q-Switching within a Laser Cavity 446
13.3 Gain-Switching 450
13.4 Mode-Locking 451
 General Description 451
 Theory 451
 Techniques for Producing Mode-Locking 456
13.5 Pulse Shortening Techniques 462
 Self-Phase Modulation 463
 Pulse Shortening or Lengthening Using Group Velocity Dispersion 464
 Pulse Compression (Shortening) with Gratings or Prisms 465
 Ultrashort-Pulse Laser and Amplifier System 467
13.6 Ring Lasers
- Monolithic Unidirectional Single-Mode Nd:YAG Ring Laser 469
- Two-Mirror Ring Laser 470

13.7 Complex Beam Parameter Analysis Applied to Multi-Mirror Laser Cavities
- Three-Mirror Ring Laser Cavity 470
- Three- or Four-Mirror Focused Cavity 473

13.8 Cavities for Producing Spectral Narrowing of Laser Output
- Cavity with Additional Fabry–Perot Etalon for Narrow-Frequency Selection 478
- Tunable Cavity 478
- Broadband Tunable cw Ring Lasers 480
- Tunable Cavity for Ultrannarrow-Frequency Output 480
- Distributed Feedback (DFB) Lasers 481
- Distributed Bragg Reflection Lasers 484

13.9 Laser Cavities Requiring Small-Diameter Gain Regions – Astigmatically Compensated Cavities

13.10 Waveguide Cavities for Gas Lasers

REFERENCES

PROBLEMS

SECTION 5. SPECIFIC LASER SYSTEMS

14 LASER SYSTEMS INVOLVING LOW-DENSITY GAIN MEDIA

OVERVIEW

14.1 Atomic Gas Lasers
- Helium–Neon Laser
 - General Description 492
 - Laser Structure 493
 - Excitation Mechanism 494
 - Applications 497
- Argon Ion Laser
 - General Description 497
 - Laser Structure 498
 - Excitation Mechanism 499
- Krypton Ion Laser 500
- Copper Vapor Laser
 - General Description 501
 - Laser Structure 502
 - Excitation Mechanism 504
- Applications 505
- Helium–Cadmium Laser
 - General Description 501
 - Laser Structure 502
 - Excitation Mechanism 504
 - Applications 505
CONTENTS

14.2 Molecular Gas Lasers 510
 Introduction 510
 Carbon Dioxide Laser 511
 General Description 511
 Laser Structure 511
 Excitation Mechanism 515
 Applications 515
 Excimer Lasers 516
 General Description 516
 Laser Structure 517
 Excitation Mechanism 518
 Applications 520
 Nitrogen Laser 520
 General Description 520
 Laser Structure and Excitation Mechanism 521
 Applications 522
 Far-Infrared Gas Lasers 522
 General Description 522
 Laser Structure 523
 Excitation Mechanism 523
 Applications 524
 Chemical Lasers 524
 General Description 524
 Laser Structure 524
 Excitation Mechanism 524
 Applications 525

14.3 X-Ray Plasma Lasers 525
 Introduction 525
 Pumping Energy Requirements 525
 Excitation Mechanism 528
 Optical Cavities 532
 X-Ray Laser Transitions 532
 Applications 532

14.4 Free-Electron Lasers 535
 Introduction 535
 Laser Structure 536
 Applications 537

REFERENCES 537

15 LASER SYSTEMS INVOLVING HIGH-DENSITY GAIN MEDIA 539
 OVERVIEW 539
15.1 Organic Dye Lasers 539
 Introduction 539
 Laser Structure 540
 Excitation Mechanism 543
 Applications 544
15.2 Solid-State Lasers 545
 Introduction 545
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruby Laser</td>
<td>547</td>
</tr>
<tr>
<td>General Description</td>
<td>547</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>548</td>
</tr>
<tr>
<td>Excitation Mechanism</td>
<td>548</td>
</tr>
<tr>
<td>Applications</td>
<td>549</td>
</tr>
<tr>
<td>Neodymium YAG and Glass Lasers</td>
<td>550</td>
</tr>
<tr>
<td>General Description</td>
<td>550</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>551</td>
</tr>
<tr>
<td>Excitation Mechanism</td>
<td>553</td>
</tr>
<tr>
<td>Applications</td>
<td>554</td>
</tr>
<tr>
<td>Neodymium:YLF Lasers</td>
<td>555</td>
</tr>
<tr>
<td>General Description</td>
<td>555</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>556</td>
</tr>
<tr>
<td>Excitation Mechanism</td>
<td>556</td>
</tr>
<tr>
<td>Applications</td>
<td>557</td>
</tr>
<tr>
<td>Neodymium:Yttrium Vanadate (Nd:YVO₄) Lasers</td>
<td>557</td>
</tr>
<tr>
<td>General Description</td>
<td>557</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>557</td>
</tr>
<tr>
<td>Excitation Mechanism</td>
<td>558</td>
</tr>
<tr>
<td>Applications</td>
<td>558</td>
</tr>
<tr>
<td>Ytterbium:YAG Lasers</td>
<td>559</td>
</tr>
<tr>
<td>General Description</td>
<td>559</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>560</td>
</tr>
<tr>
<td>Excitation Mechanism</td>
<td>560</td>
</tr>
<tr>
<td>Applications</td>
<td>561</td>
</tr>
<tr>
<td>Alexandrite Laser</td>
<td>562</td>
</tr>
<tr>
<td>General Description</td>
<td>562</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>563</td>
</tr>
<tr>
<td>Excitation Mechanism</td>
<td>563</td>
</tr>
<tr>
<td>Applications</td>
<td>564</td>
</tr>
<tr>
<td>Titanium Sapphire Laser</td>
<td>565</td>
</tr>
<tr>
<td>General Description</td>
<td>565</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>566</td>
</tr>
<tr>
<td>Excitation Mechanism</td>
<td>567</td>
</tr>
<tr>
<td>Applications</td>
<td>568</td>
</tr>
<tr>
<td>Chromium LiSAF and LiCAF Lasers</td>
<td>568</td>
</tr>
<tr>
<td>General Description</td>
<td>568</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>568</td>
</tr>
<tr>
<td>Excitation Mechanism</td>
<td>569</td>
</tr>
<tr>
<td>Applications</td>
<td>570</td>
</tr>
<tr>
<td>Fiber Lasers</td>
<td>570</td>
</tr>
<tr>
<td>General Description</td>
<td>570</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>571</td>
</tr>
<tr>
<td>Excitation Mechanism</td>
<td>571</td>
</tr>
<tr>
<td>Applications</td>
<td>572</td>
</tr>
<tr>
<td>Color Center Lasers</td>
<td>573</td>
</tr>
<tr>
<td>General Description</td>
<td>573</td>
</tr>
<tr>
<td>Laser Structure</td>
<td>574</td>
</tr>
</tbody>
</table>
CONTENTS

Excitation Mechanism 574
Applications 576

15.3 Semiconductor Diode Lasers 576
Introduction 576
Four Basic Types of Laser Materials 579
Laser Structure 581
Frequency Control of Laser Output 591
Quantum Cascade Lasers 592
p-Doped Germanium Lasers 594
Excitation Mechanism 594
Applications 596

REFERENCES 597

SECTION 6. FREQUENCY MULTIPLICATION OF LASER BEAMS

16 FREQUENCY MULTIPLICATION OF LASERS AND OTHER NONLINEAR OPTICAL EFFECTS 601

OVERVIEW 601

16.1 Wave Propagation in an Anisotropic Crystal 601
16.2 Polarization Response of Materials to Light 603
16.3 Second-Order Nonlinear Optical Processes 604
 Second Harmonic Generation 604
 Sum and Difference Frequency Generation 605
 Optical Parametric Oscillation 607
16.4 Third-Order Nonlinear Optical Processes 607
 Third Harmonic Generation 608
 Intensity-Dependent Refractive Index – Self-Focusing 609
16.5 Nonlinear Optical Materials 610
16.6 Phase Matching 610
 Description of Phase Matching 610
 Achieving Phase Matching 613
 Types of Phase Matching 615
16.7 Saturable Absorption 615
16.8 Two-Photon Absorption 617
16.9 Stimulated Raman Scattering 618
16.10 Harmonic Generation in Gases 619

REFERENCES 619

Appendix 621
Index 625
Introduction

OVERVIEW A laser is a device that amplifies light and produces a highly directional, high-intensity beam that most often has a very pure frequency or wavelength. It comes in sizes ranging from approximately one tenth the diameter of a human hair to the size of a very large building, in powers ranging from 10^{-9} to 10^{20} W, and in wavelengths ranging from the microwave to the soft-X-ray spectral regions with corresponding frequencies from 10^{13} to 10^{17} Hz. Lasers have pulse energies as high as 10^4 J and pulse durations as short as 5×10^{-15} s. They can easily drill holes in the most durable of materials and can weld detached retinas within the human eye. They are a key component of some of our most modern communication systems and are the “phonograph needle” of our compact disc players. They perform heat treatment of high-strength materials, such as the pistons of our automobile engines, and provide a special surgical knife for many types of medical procedures. They act as target designators for military weapons and provide for the rapid check-out we have come to expect at the supermarket. What a remarkable range of characteristics for a device that is in only its fifth decade of existence!

INTRODUCTION There is nothing magical about a laser. It can be thought of as just another type of light source. It certainly has many unique properties that make it a special light source, but these properties can be understood without knowledge of sophisticated mathematical techniques or complex ideas. It is the objective of this text to explain the operation of the laser in a simple, logical approach that builds from one concept to the next as the chapters evolve. The concepts, as they are developed, will be applied to all classes of laser materials, so that the reader will develop a sense of the broad field of lasers while still acquiring the capability to study, design, or simply understand a specific type of laser system in detail.

DEFINITION OF THE LASER The word laser is an acronym for Light Amplification by Stimulated Emission of Radiation. The laser makes use of processes that increase or amplify light signals after those signals have been generated by other means. These processes include (1) stimulated emission, a natural effect that was deduced by considerations relating to thermodynamic equilibrium, and (2) optical feedback (present in most
INTRODUCTION

Figure 1-1 Simplified schematic of typical laser

lasers) that is usually provided by mirrors. Thus, in its simplest form, a laser consists of a gain or amplifying medium (where stimulated emission occurs), and a set of mirrors to feed the light back into the amplifier for continued growth of the developing beam, as seen in Figure 1-1.

SIMPLICITY OF A LASER

The simplicity of a laser can be understood by considering the light from a candle. Normally, a burning candle radiates light in all directions, and therefore illuminates various objects equally if they are equidistant from the candle. A laser takes light that would normally be emitted in all directions, such as from a candle, and concentrates that light into a single direction. Thus, if the light radiating in all directions from a candle were concentrated into a single beam of the diameter of the pupil of your eye (approximately 3 mm), and if you were standing a distance of 1 m from the candle, then the light intensity would be 1,000,000 times as bright as the light that you normally see radiating from the candle! That is essentially the underlying concept of the operation of a laser. However, a candle is not the kind of medium that produces amplification, and thus there are no candle lasers. It takes relatively special conditions within the laser medium for amplification to occur, but it is that capability of taking light that would normally radiate from a source in all directions – and concentrating that light into a beam traveling in a single direction – that is involved in making a laser. These special conditions, and the media within which they are produced, will be described in some detail in this book.

UNIQUE PROPERTIES OF A LASER

The beam of light generated by a typical laser can have many properties that are unique. When comparing laser properties to those of other light sources, it can be readily recognized that the values of various parameters for laser light either greatly exceed or are much more restrictive than the values for many common light sources. We never use lasers for street illumination, or for illumination within our houses. We don’t use them for searchlights or flashlights or as headlights in
our cars. Lasers generally have a narrower frequency distribution, or much higher intensity, or a much greater degree of collimation, or much shorter pulse duration, than that available from more common types of light sources. Therefore, we do use them in compact disc players, in supermarket check-out scanners, in surveying instruments, and in medical applications as a surgical knife or for welding detached retinas. We also use them in communications systems and in radar and military targeting applications, as well as many other areas. A laser is a specialized light source that should be used only when its unique properties are required.

THE LASER SPECTRUM AND WAVELENGTHS

A portion of the electromagnetic radiation spectrum is shown in Figure 1-2 for the region covered by currently existing lasers. Such lasers span the wavelength range from the far infrared part of the spectrum (\(\lambda = 1,000 \mu m \)) to the soft–X-ray region (\(\lambda = 3 \) nm), thereby covering a range of wavelengths of almost six orders of magnitude. There are several types of units that are used to define laser wavelengths. These range from micrometers or microns (\(\mu m \)) in the infrared to nanometers (nm) and angstroms (Å) in the visible, ultraviolet (UV), vacuum ultraviolet (VUV), extreme ultraviolet (EUV or XUV), and soft–X-ray (SXR) spectral regions.

WAVELENGTH UNITS

\[
\begin{align*}
1 \mu m &= 10^{-6} m; \\
1 \AA &= 10^{-10} m; \\
1 \text{nm} &= 10^{-9} m.
\end{align*}
\]

Consequently, 1 micron (\(\mu m \)) = 10,000 angstroms (Å) = 1,000 nanometers (nm). For example, green light has a wavelength of \(5 \times 10^{-7} m = 0.5 \mu m = 5,000 \AA = 500 \text{nm} \).

![Figure 1-2. Wavelength range of various lasers](image)
INTRODUCTION

WAVELENGTH REGIONS

Far infrared: 10 to 1,000 µm;
middle infrared: 1 to 10 µm;
near infrared: 0.7 to 1 µm;
visible: 0.4 to 0.7 µm, or 400 to 700 nm;
ultraviolet: 0.2 to 0.4 µm, or 200 to 400 nm;
vacuum ultraviolet: 0.1 to 0.2 µm, or 100 to 200 nm;
extreme ultraviolet: 10 to 100 nm;
soft X-rays: 1 nm to approximately 20–30 nm (some overlap with EUV).

A BRIEF HISTORY OF THE LASER

Charles Townes took advantage of the stimulated emission process to construct a microwave amplifier, referred to as a maser. This device produced a coherent beam of microwaves to be used for communications. The first maser was produced in ammonia vapor with the inversion between two energy levels that produced gain at a wavelength of 1.25 cm. The wavelengths produced in the maser were comparable to the dimensions of the device, so extrapolation to the optical regime — where wavelengths were five orders of magnitude smaller — was not an obvious extension of that work.

In 1958, Townes and Schawlow published a paper concerning their ideas about extending the maser concept to optical frequencies. They developed the concept of an optical amplifier surrounded by an optical mirror resonant cavity to allow for growth of the beam. Townes and Schawlow each received a Nobel Prize for his work in this field.

In 1960, Theodore Maiman of Hughes Research Laboratories produced the first laser using a ruby crystal as the amplifier and a flashlamp as the energy source. The helical flashlamp surrounded a rod-shaped ruby crystal, and the optical cavity was formed by coating the flattened ends of the ruby rod with a highly reflecting material. An intense red beam was observed to emerge from the end of the rod when the flashlamp was fired!

The first gas laser was developed in 1961 by A. Javan, W. Bennett, and D. Harriott of Bell Laboratories, using a mixture of helium and neon gases. At the same laboratories, L. F. Johnson and K. Nassau demonstrated the first neodymium laser, which has since become one of the most reliable lasers available. This was followed in 1962 by the first semiconductor laser, demonstrated by R. Hall at the General Electric Research Laboratories. In 1963, C. K. N. Patel of Bell Laboratories discovered the infrared carbon dioxide laser, which is one of the most efficient and powerful lasers available today. Later that same year, E. Bell of Spectra Physics discovered the first ion laser, in mercury vapor. In 1964 W. Bridges of Hughes Research Laboratories discovered the argon ion laser, and in 1966 W. Silfvast, G. R. Fowles, and B. D. Hopkins produced the first blue helium–cadmium metal vapor
laser. During that same year, P. P. Sorokin and J. R. Lankard of the IBM Research Laboratories developed the first liquid laser using an organic dye dissolved in a solvent, thereby leading to the category of broadly tunable lasers. Also at that time, W. Walter and co-workers at TRG reported the first copper vapor laser.

The first vacuum ultraviolet laser was reported to occur in molecular hydrogen by R. Hodgson of IBM and independently by R. Waynant et al. of the Naval Research Laboratories in 1970. The first of the well-known rare-gas–halide excimer lasers was observed in xenon fluoride by J. J. Ewing and C. Brau of the Avco–Everett Research Laboratory in 1975. In that same year, the first quantum-well laser was made in a gallium arsenide semiconductor by J. van der Ziel and co-workers at Bell Laboratories. In 1976, J. M. J. Madey and co-workers at Stanford University demonstrated the first free-electron laser amplifier operating in the infrared at the CO2 laser wavelength. In 1979, Walling and co-workers at Allied Chemical Corporation obtained broadly tunable laser output from a solid-state laser material called alexandrite, and in 1985 the first soft-X-ray laser was successfully demonstrated in a highly ionized selenium plasma by D. Matthews and a large number of co-workers at the Lawrence Livermore Laboratories. In 1986, P. Moulton discovered the titanium sapphire laser. In 1991, M. Hasse and co-workers developed the first blue-green diode laser in ZnSe. In 1994, F. Capasso and co-workers developed the quantum cascade laser. In 1996, S. Nakamura developed the first blue diode laser in GaN-based materials.

In 1961, Fox and Li described the existence of resonant transverse modes in a laser cavity. That same year, Boyd and Gordon obtained solutions of the wave equation for confocal resonator modes. Unstable resonators were demonstrated in 1969 by Krupke and Sooy and were described theoretically by Siegman. Q-switching was first obtained by McClung and Hellwarth in 1962 and described later by Wagner and Lengyel. The first mode-locking was obtained by Hargrove, Fork, and Pollack in 1964. Since then, many special cavity arrangements, feedback schemes, and other devices have been developed to improve the control, operation, and reliability of lasers.

OVERVIEW OF THE BOOK

Isaac Newton described light as small bodies emitted from shining substances. This view was no doubt influenced by the fact that light appears to propagate in a straight line. Christian Huygens, on the other hand, described light as a wave motion in which a small source spreads out in all directions; most observed effects—including diffraction, reflection, and refraction—can be attributed to the expansion of primary waves and of secondary wavelets. The dual nature of light is still a useful concept, whereby the choice of particle or wave explanation depends upon the effect to be considered.

Section One of this book deals with the fundamental wave properties of light, including Maxwell’s equations, the interaction of electromagnetic radiation with
matter, absorption and dispersion, and coherence. Section Two deals with the fundamental quantum properties of light. Chapter 3 describes the concept of discrete energy levels in atomic laser species and also how the periodic table of the elements evolved. Chapter 4 deals with radiative transitions and emission linewidths and the probability of making transitions between energy levels. Chapter 5 considers energy levels of lasers in molecules, liquids, and solids – both dielectric solids and semiconductors. Chapter 6 then considers radiation in equilibrium and the concepts of absorption and stimulated emission of radiation. At this point the student has the basic tools to begin building a laser.

Section Three considers laser amplifiers. Chapter 7 describes the theoretical basis for producing population inversions and gain. Chapter 8 examines laser gain and operation above threshold, Chapter 9 describes how population inversions are produced, and Chapter 10 considers how sufficient amplification is achieved to make an intense laser beam. Section Four deals with laser resonators. Chapter 11 considers both longitudinal and transverse modes within a laser cavity, and Chapter 12 investigates the properties of stable resonators and Gaussian beams. Chapter 13 considers a variety of special laser cavities and effects, including unstable resonators, Q-switching, mode-locking, pulse narrowing, ring lasers, and spectral narrowing.

Section Five covers specific laser systems. Chapter 14 describes eleven of the most well-known gas and plasma laser systems. Chapter 15 considers twelve well-known dye lasers and solid-state lasers, including both dielectric solid-state lasers and semiconductor lasers. The book concludes with Section Six (Chapter 16), which provides a brief overview of frequency multiplication with lasers and other nonlinear effects.