2 µm Fiber Lasers

Lawrence Shah
Martin Richardson
Townes Laser Institute
CREOL, The College of Optics and Photonics
University of Central Florida

ISPD1
June 26, 2013
Introduction

Review of near IR to mid IR fiber lasers

Introduction

Review of near IR to mid IR fiber lasers

<table>
<thead>
<tr>
<th>Dopant(s)</th>
<th>Host glass</th>
<th>Pump λ (μm)</th>
<th>Laser λ (μm)</th>
<th>Transition</th>
<th>Output power (W)</th>
<th>Slope efficiency (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er³⁺, Yb³⁺</td>
<td>Silicate</td>
<td>0.975</td>
<td>1.5</td>
<td>⁴I₁₃/₂ → ⁴I₅/₂</td>
<td>297</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Tm³⁺, Ho³⁺</td>
<td>ZBLAN</td>
<td>0.792</td>
<td>1.94</td>
<td>³F₄ → ³H₆</td>
<td>20</td>
<td>49</td>
<td>33</td>
</tr>
<tr>
<td>Tm³⁺</td>
<td>Silicate</td>
<td>0.793</td>
<td>2.05</td>
<td>³F₄ → ³H₆</td>
<td>1,050</td>
<td>53</td>
<td>22</td>
</tr>
<tr>
<td>Tm³⁺, Ho³⁺</td>
<td>Silicate</td>
<td>0.793</td>
<td>2.1</td>
<td>⁵I₇ → ⁵I₈</td>
<td>83</td>
<td>42</td>
<td>34</td>
</tr>
<tr>
<td>Ho³⁺</td>
<td>Silicate</td>
<td>1.950</td>
<td>2.14</td>
<td>⁵I₇ → ⁵I₈</td>
<td>140</td>
<td>55</td>
<td>23</td>
</tr>
<tr>
<td>Tm³⁺</td>
<td>ZBLAN</td>
<td>1.064</td>
<td>2.31</td>
<td>³H₄ → ³H₆</td>
<td>0.15</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>Er³⁺</td>
<td>ZBLAN</td>
<td>0.975</td>
<td>2.8</td>
<td>⁴I₁₃/₂ → ⁴I₁₃/₂</td>
<td>24</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>Ho³⁺, Pr³⁺</td>
<td>ZBLAN</td>
<td>1.1</td>
<td>2.86</td>
<td>⁵I₆ → ⁵I₇</td>
<td>2.5</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Dy³⁺</td>
<td>ZBLAN</td>
<td>1.1</td>
<td>2.9</td>
<td>⁴H₁₃/₂ → ⁴H₅/₂</td>
<td>0.275</td>
<td>4.5</td>
<td>36</td>
</tr>
<tr>
<td>Ho³⁺</td>
<td>ZBLAN</td>
<td>1.15</td>
<td>3.002</td>
<td>⁵I₆ → ⁵I₇</td>
<td>0.77</td>
<td>12.4</td>
<td>26</td>
</tr>
<tr>
<td>Ho³⁺</td>
<td>ZBLAN</td>
<td>0.532</td>
<td>3.22</td>
<td>⁵S₂ → ⁵F₅</td>
<td>0.001</td>
<td>2.8</td>
<td>27</td>
</tr>
<tr>
<td>Er³⁺</td>
<td>ZBLAN</td>
<td>0.653</td>
<td>3.45</td>
<td>⁴F₉/₂ → ⁴I₉/₂</td>
<td>0.008</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Ho³⁺</td>
<td>ZBLAN</td>
<td>0.89</td>
<td>3.95</td>
<td>⁵I₅ → ⁵I₆</td>
<td>0.001</td>
<td>3.7</td>
<td>29</td>
</tr>
</tbody>
</table>

Absorption Spectra of Selected Gases

Absorption (Arb. Units)

H_{2}O

CO_{2}

CH_{4}

Wavelength (µm)

Thulium window (1.8 – 2.1 µm)

HITRAN2008 line spectrum(\url{http://www.spectralcalc.com})
Outline

• Review of 2 µm fiber laser development
 - CW
 - Pulsed

• Application
 - Nonlinear pump
High power, single frequency

- 790 nm pumping with 54% slope efficiency
- Non-PM LMA Tm fiber 25/400 with 0.08 NA
- $M^2 = 1.05$ at 608 W

High power, single frequency

- <5 MHz linewidth maintained with <0.4% of total power in ASE
- High power single-mode and single-frequency output achieved by suppression of SBS
- Low phase noise and high quality output ideal for coherent beam combining

All-fiber 1 kW Tm Laser

The pump is 6 Tm:fiber lasers at 1.95 μm (160-180 W each)
Tm:fiber 15 μm core, 0.1 NA, 25 μm pedestal

Ho:fiber 18 μm core, 0.08 NA, 112 μm octagonal cladding
V-parameter 2.2 ensures robust single-mode output

Initially ~50% slope efficiency

Tm:fiber Tuning Range

- 216 W maximum output
- 60% amplifier optical-to-optical efficiency
- 790 nm diode pumping
- >200 W from 1927-2097 nm
- <200 pm linewidth
- Nearly diffraction-limited

Tm:fiber SBC Results

MOPA 1: 2046 nm, 87 W
MOPA 2: 2040 nm, 99 W
MOPA 3: 2035 nm, 98 W

89% combining efficiency, 35% total optical-to-optical efficiency
Incident Power 284 W, combined power 253 W
• Tm and Ho fiber development have achieved 1 kW and 400 W average power respectively with nearly diffraction-limited beam quality
• Component availability and performance improving
• Power scaling is primarily limited by heat, in particular Ho:fiber is far from theoretical efficiency
• Doped glass chemistry is a challenge
Outline

• Review of 2 µm fiber laser development
 - CW
 - Pulsed
• Application
 - Nonlinear pump
Gain switched nanosecond

Ho:fiber output 16 µJ energy, 85 ns duration at 600 kHz >60% slope efficiency, $M^2 < 1.1$

This method can be used to produce 10 ns pulses directly without the need for active modulators at 2 µm

Narrow linewidth nanosecond Tm:fiber lasers

Primarily for LIDAR applications, several efforts to develop high peak power Tm:fiber “single-frequency” sources

Q. Fang et al., "High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling," Opt. Ex. 20, 16410 (2012)
Comparison of Tm-doped LMA Fibers

<table>
<thead>
<tr>
<th>Fiber</th>
<th>LMA 25/400</th>
<th>Flexible PCF 50/250</th>
<th>PCF Rod 80/220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>3 m</td>
<td>3 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>Mode field diameter</td>
<td>23 µm</td>
<td>36 µm</td>
<td>56 µm</td>
</tr>
<tr>
<td>Numerical aperture</td>
<td>0.1</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Mode field area</td>
<td>~400 µm²</td>
<td>~1000 µm²</td>
<td>~2500 µm²</td>
</tr>
</tbody>
</table>

CW lasing in Tm:PCF

Q-switched Tm:PCF oscillator

CW lasing in Tm:PCF rod
Comparison of Tm-doped LMA Fibers

C.C.C. Willis et al., “High energy Q-switched Tm$^{3+}$-doped polarization maintaining silica fiber laser,” Photonics West 2010, paper 75801F

• The percentage of usable output reduces from 80% to <60% starting with pulse energies >100 µJ and a minimum pulse duration of 150 ns
• No such degradation occurs using PCF, enabling energy scaling to 435 µJ energy with 49 ns pulse duration

P. Kadwani et al., “Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers”, Opt. Exp. 20, 24295 (2012)
Recent modal characterization measurements confirm Tm-doped PCFs offer significantly larger mode area and reduced higher-order mode content.

This work done with Prof. Axel Schülzgen and Clemence Jollivet

P. Kadwani et al., “Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers”, Opt. Exp. 20, 24295 (2012)
Nanosecond Peak Power Scaling

Amplification to >890 kW with no evidence of nonlinear pulse degradation

C. Gaida et al., “Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod”, Opt. Lett. 38, 691 (2013)

>50 W CW in Tm:LPF

>2.4 mJ, 33 W in Tm:LPF

Seed pulses generated by a gain switched InGaAs/InP diode

Maximum peak power of 100 kW: 3.5 µJ, 33 ps pulse at 2 MHz

Further scaling claimed to be limited by modal instability (MI)

After spectral filtering:
- 3 nJ pulse energy
- ~150 fs pulse duration
- ~30 nm (FWHM) spectral width
- Tuning range 1980 – 2100 nm

Tm:fiber CPA with CBG

Pulse stretching to 160 ps and recompression using a Chirped Bragg Grating (CBG) from OptiGrate

\[\Delta \lambda = 30 \text{ nm (FWHM)} \]
\[\lambda_{\text{cen}} = 2020 \text{ nm} \]
Amplified to >5 W at 60 MHz

37 \mu J in 910 fs

P. Wan et al., “High pulse energy 2 \mu m femtosecond fiber laser”, Opt. Ex.21,1798 (2013)
Utilizing the Bandwidth

Normal GVD stretcher fiber
Pulse duration \(\sim 40 \) ps
Similarton-like pulse broadening
from 29 to 60 nm

Center Wavelength 2020 nm
Average Power 12.8 W
182 nJ uncompressed, 60 nm Bandwidth
In the last two years, the development of CPA systems has accelerated greatly -

> MW peak power, <100 fs

Nanosecond system development is maturing -

MW peak power, 1-10 ns range

Picosecond laser development has lagged behind CPA and nanosecond, but is rapidly emerging

100 kW peak power, ~30 ps
• Review of 2 µm fiber laser development
 - CW
 - Pulsed
• Application
 - Nonlinear pump

Another entire area of application for 2 µm fiber laser is in telecommunication, using HC-PBF

Nanosecond OPO

Simple flat-flat ZGP OPO cavity pumped by high peak power Tm:PCF based MOPA

The combination of Tm:fiber frequency comb and nonlinear conversion (OPO enhancement cavity) offers new tools mid-IR spectroscopy.

Laser
- Pulse duration: 450 fs
- Peak power: 9.6 kW

Sample
- Length: 6.8 cm
- Minimum core: 250 nm
- Core: $\text{As}_2\text{Se}_{1.5}\text{S}_{1.5}$
- Cladding: As_2S_3

In tellurite fiber

In chalcogenide fiber

This fiber supplied by Profs. Heike Ebendorff-Heidepriem and Tanya Monro, Univ. of Adelaide

This work done in collaboration with Prof. Ayman Abouraddy and Soroush Shabahang
• 2 µm fiber lasers have proven a unique source for pumping nonlinear processes particularly the generation of mid-IR

• Excellent beam quality and high average power are readily achievable

• Additional processes will be enabled by the continued advance in Tm: and Ho: fiber sources
Final Questions

- CW – How to improve dopant material to achieve high efficiency?
- Pulsed – Can 2 µm fiber lasers take advantage of lower nonlinearity to exceed Yb:fiber lasers in peak power?
- Nonlinear pump – Can 2 µm fiber lasers compete with the peak power from Ho:solid-state systems?
Thank You!
The 2 μm wavelength is attractive for polymer welding

Si “Backside” Machining

On target:
Maximum energy $E = 200 \, \mu J$
Minimum diameter $d = 10 \, \mu m$
Maximum fluence $F = 255 \, J/cm^2$

Target:
500 μm thick, DSP un-doped Si wafers

[Diagram of laser system with labels for Tm:fiber MOPA system, Shutter, Mirror, Wafer target, 7.5 mm asph. lens, Vertical Rail, 3D motorized motion control stage]
Si “Backside” Machining

Front and backside machining look very different, and require very different powers!

Front
(200 mW, 1 mm/s, focus 0 µm)

Backside
(200 mW, 1 mm/s, focus in air ~400 µm)