Helical filaments
Nicholas Barbieri, Zahra Hosseinimakarem, Khan Lim, Magali Durand, Matthieu Baudelet, Eric Johnson, and Martin Richardson

View online: http://dx.doi.org/10.1063/1.4886960
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/26?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
The splitted laser beam filamentation in interaction of laser and an exponential decay inhomogeneous underdense plasma
Phys. Plasmas 18, 102106 (2011); 10.1063/1.3649801

Filamentation of ultrashort laser pulses propagating in tenuous plasmas
Phys. Plasmas 14, 083104 (2007); 10.1063/1.2768030

The transition from thermally driven to ponderomotively driven stimulated Brillouin scattering and filamentation of light in plasma
Phys. Plasmas 12, 062508 (2005); 10.1063/1.1931089

Studies of the laser filament instability in a semicollisional plasma
Phys. Plasmas 10, 3545 (2003); 10.1063/1.1598204

Modeling the filamentation of ultra-short pulses in ionizing media
Helical filaments

Nicholas Barbieri,1 Zahra Hosseinimakarem,2 Khan Lim,1 Magali Durand,1 Matthieu Baudelet,1 Eric Johnson,2 and Martin Richardson1

1Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
2Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634, USA

(Received 28 May 2014; accepted 22 June 2014; published online 1 July 2014)

The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4886960]

Laser filamentation in air is a nonlinear phenomenon that occurs for ultrafast laser pulses with peak powers in excess of a critical power \(\sim 3 \text{ GW} \). It arises primarily from two nonlinear processes. First, modification of the refractive index of air by optical Kerr effect causes the beam to self-focus, overcoming normal diffraction.1,2 When intensities of \(10^{13} \text{ W/cm}^2 \) are achieved, ionization of the propagation medium provides a compensating negative refractive index, causing the beam to stabilize into a \(\sim 100 \mu \text{m} \) (full-width half maximum (FWHM)) diameter plasma filament.3–6 i.e., a self-guided ionizing light channel that can propagate over several hundred meters.2,5,7,8 Dynamic competition within the filament clamps the peak intensity at \(3 \times 10^{15} \text{ W/cm}^2 \).9,10 For powers several times greater than the filamentation critical power, multiple filamentation occurs.11,12 The organization of these channels is based on the noise within the initial spatial profile of the beam and, if not controlled, can change on a shot-to-shot basis. Under these conditions, this phenomenon is unsuitable for applications that require control or consistency in the ordering of the filaments. However, ordered filament arrays can be obtained through appropriate modification of the laser wavefront prior to filamentation.13–15

The ability to control and order multiple filaments originating from a single laser beam is critical to expanding the range of practical application of laser filaments. In particular, filamentation provides a promising approach to guiding microwave radiation, either by synthesizing conventional guiding structures,16–19 or by creating more unorthodox structures, such as the recently suggested virtual hyperbolic metamaterials.20

Non-diffracting beams21–25 provide a promising means of controlling filamentation. Previous laboratory studies of the control of single filaments using non-diffracting beams have led to the observation of both Bessel filaments26–29 and Airy filaments.30,31 Non-diffracting beams are not limited to single peak intensity beams. Since Bessel beams are a basis of the Helmholtz equation,32 beams of any geometry can be obtained through the suitable superposition of Bessel beams, including beams with multiple intensity peaks.33 We have previously demonstrated dual, helical non-diffracting beams34 using this approach.

In the present paper, the creation of dual helical filaments in air is demonstrated. These beams extend over distances of 2 m in the laboratory and possess the ionization, self-cleaning and spectral broadening properties associated with air filaments. These experiments demonstrate the use of non-diffractive beams as a means of generating ordered arrays of filaments in air.

The laser system used was an ultrafast Ti:sapphire laser system providing 800 nm pulses with a pulse duration of 50 fs at 10 Hz and energies up to 20 mJ. The beam had a 10 mm (FWHM) Gaussian spatial profile. Helical beams were generated by placing a complex coaxial vortex plate (VP) in series with a pair of coaxially aligned Fresnel axicons (AX) along the laser propagation axis (Fig. 1). The complex coaxial vortex plate comprised an inner vortex plate 5 mm in diameter that induced a unit azimuthal charge onto the 800 nm beam, and a surrounding 10 mm diameter phase plate that induced the opposite azimuthal charge on the beam. The Fresnel axicon phase plate featured two separate cone angles. Within the inner diameter of 5 mm, the axicon refracted light at an angle of 0.0375°, while light outside this diameter was refracted at an angle of 0.0625°.

Helical beams are obtained from the superposition of two first order Bessel-Gauss beams of opposite azimuthal charge. First order Bessel beams can be generated by placing an axicon and an azimuthal phase plate in series with a Gaussian beam.34,35 The aforementioned setup operates by generating two Bessel beams in series by applying different axicon angles and azimuthal phases at different distances from the optical axis, and permitting the resulting beams to interfere along the optical axis during propagation.

![FIG. 1. Configuration for double helical filament formation.](image)
This configuration (Fig. 1) can be modeled by applying the phase lag associated with the axicons and the vortex phase plate to the incident Gaussian beam. For \(r < r_s \), the associated phase lag is
\[
E_{\text{inner}} = \exp(-i\phi) \exp(-ik\beta_r r) E_{\text{incident}},
\]
while for \(r > r_s \), the associated phase lag is
\[
E_{\text{outer}} = \exp(i\phi) \exp(-ik\beta_r r) E_{\text{incident}}.
\]
Substituting these expressions into the Fresnel diffraction integral for the limit \(\beta_i \rightarrow \beta_i \) and calculating the resulting intensity from the corresponding diffracted electric field yields
\[
I(r, \phi, z) = I_0 C(z) J_1^2(k_{\perp}, r) \cos^2[\theta(\phi, z)],
\]
where
\[
C(z) = 4\pi \frac{k^2 z}{2k} \exp\left(-\frac{2z}{R_{\gamma, \beta}^2}\right)
\]
and
\[
\theta(\phi, z) = \phi - \frac{k^2_{\perp, \beta} - k^2_{\perp, j}}{4k} z.
\]
Here, \(k \) is the wavenumber, \(k_{\perp, \beta} = \beta_{\beta} k_\perp \), \(k_{\perp, j} = \beta_{j} k_\perp \), and \(k_{\perp} = k\beta \), where \(\beta = (\beta_{\beta} + \beta_{j})/2 \), the transverse wavenumbers associated with the outer and inner regions of the axicons and \(l_{\gamma, \beta} = w/\beta_{\beta} \), where \(w \) is the Gaussian beam waist of the incident beam. The angles \(\beta_{\beta} \) and \(\beta_{j} \) are the axicon refraction angles associated with \(r < 2.5 \text{ mm} \) and \(r > 2.5 \text{ mm} \), respectively. Because of the \(z \) dependence of Eq. (5), the beam intensity profile rotates during propagation at a rate
\[
\frac{\partial \theta}{\partial z} = \frac{k^2_{\perp, \beta} - k^2_{\perp, j}}{4k} \frac{1}{2} \frac{\beta_{\beta}^2 - \beta_j^2}{\lambda}.
\]
The size of the helical beam can be estimated from Eq. (3). Observing that each intensity peak is bounded by the first and second zeros of \(J_1(k_{\perp}, r) \), the diameter of the individual intensity peaks cannot exceed
\[
d_{\text{max}} = \frac{3.8317}{k_{\perp}} \frac{1.122\lambda}{\beta_{\beta} + \beta_j}.
\]
The spacing of the helical beam intensity peaks can similarly be estimated. Assuming each intensity peak is centered on the first extremum of \(J_1(k_{\perp}, r) \), and observing that the cosine term in Eq. (3) requires an azimuthal separation of \(\pi \), then the center of the intensity peaks are separated by a distance of
\[
d_{\text{sep}} = \frac{3.6824}{k_{\perp}} \frac{1.17\lambda}{\beta_{\beta} + \beta_j}.
\]
In our experimental case, the diffraction angles were set at \(\beta_j = 0.0375^\circ \) and \(\beta_{\beta} = 0.0625^\circ \). Substituting these values into the above equations give a rotation rate of \(\partial \theta/\partial z = 0.015 \text{ rad/cm} \) or \(0.86 \text{ deg/cm} \), a maximum beam diameter of \(d_{\text{max}} = 560 \mu\text{m} \) and a beam separation value of \(d_{\text{sep}} = 540 \mu\text{m} \).

The peak intensity can be calculated by evaluating Eq. (3) at \(r = d_{\text{sep}}/2 \) and \(\phi = (k^2_{\perp, \beta} - k^2_{\perp, j}) z/4k \), yielding
\[
I(z) = 23 \left(\frac{\beta_{\beta}^2}{\lambda^2} \right) \exp\left(-\frac{2z}{R_{\gamma, \beta}^2}\right) I_0.
\]
broadening, both occurring for intensities above 10^{13} W/cm2. To measure ionization, a pair of 20 mm x 25 mm copper electrodes spaced 12 mm apart, and raised to a potential of 8.5 kV using a capacitive driver circuit was located symmetrically about the propagating helical beam. An oscilloscope recorded the voltage drop across a 6 MΩ resistor placed in series with the cathode. The maximum value of this voltage drop was then averaged over 10 shots recorded at each point, and the standard deviation was taken as the error (Fig. 3).

At laser pulse energies of 11.5 mJ, the helical beams are observed to ionize over a distance of 160 cm–380 cm as measured from the axicon. Both the beam peak intensity and the ionization signal strength display two longitudinally separated peaks. These peaks show approximate correspondence, with the first ionization peak preceding the first intensity peak by 30 cm while the second ionization peak occurs 10 cm beyond the second intensity peak.

The helical filament transverse profiles taken over the ionizing region are shown in Fig. 2(c). When compared to the linear case, the helical filaments maintain the same basic structure and energy distribution. The beams retain their general shape and continue to rotate at a constant rate of 0.875 deg/cm, but undergo a 20° angular shift relative to their linear counterparts. The largest differences are observed for the images taken at 220 cm and 340 cm (Fig. 2(c)), which are located at the two intensity peaks of this helical beam (Fig. 3). Several effects are observed at these points, including a reduction in the spacing between the two helical beam spots by 63–125 μm, a reduction in the diameter of each spot, an increase in beam peak intensity and an improvement in beam quality indicating the helical filaments were undergoing spatial cleaning. At 340 cm, the helical beam peaks transform from elliptical spots to circular spots measuring 175 μm in diameter, further demonstrating the effects of spatial cleaning on the helical filament.

The modifications to helical beam shape and rotation rate mirror those predicted by Xi et al. and later observed by Shim et al. for the interaction between single laser filaments in air. When two filaments are spaced less than a millimeter apart, the superposition of their peripheral fields will modify the nonlinear effects governing light propagation. If the peripheral fields are in phase, the refractive index of the intervening space between the two filaments will increase, resulting in a mutual attraction between the filaments, as is being observed for the helical filaments. Additionally, if a small angle is present between the directions of propagation of the two filaments while they are interacting, the filament arrangement will also rotate in space by a finite angle. This is an effect which can clearly be observed in Fig. 2 for our experiment. Thus, both the consequence of laser filamentation and laser filament interaction have been observed from this experiment.

The spectrum associated with the helical filaments was recorded using two spectrometers (Ocean Optics USB2000 in the NIR and HR2000 in the visible) both prior to nonlinear propagation and after the helical filament had dissipated. The results are shown in Fig. 4. The measured spectrum was found to broaden, with amplitudes \geq1% increasing from

FIG. 2. Top: An isometric rendering of the intensity iso-surface of the helical beam as it propagates through space (as taken from simulation). Bottom: Helical beam transverse profiles as a function of propagation distance, simulated (a), measured for 135 μJ pulses (b) and 11.5 mJ pulses (c).

FIG. 3. Ionization signal strength and simulated intensity as a function of beam propagation distance.
By shaping an ultrafast pulse using a non-diffracting beam superposition, 2 m long helical filaments were formed in the laboratory. The beam size, spacing, and rotation rate were accurately described by our models, while the effects of both filamentation and mutual filament interaction were observed in the experimental results. These results demonstrate complex non-diffracting beam shapes can be used to control and shape laser filaments. With sufficient laser pulse energy, it should be possible to obtain other filament geometries using multi-intensity peaked non-diffracting beams, including cylindrical and rectangular arrays of filaments. Such filament structures would then be suitable for a variety of applications, including the generation and guiding of radio-frequency and microwaves.

The authors acknowledge useful discussions with Dr. D. Christodoulides, the support of Dr. M. Weidman and the funding support from the ARO MURI on Air Filamentation Science, the HEL JTO, the NCMR MASINT Program and funding support from the ARO MURI on Air Filamentation, Christodoulides, the support of Dr. M. Weidman and the radio-frequency and microwaves.

770–830 nm to 720–930 nm, consistent with the broadening observed for laser filamentation.2,40,41

FIG. 4. Spectral broadening resulting from the filamentation of helical beams.

