OSE 6455 Photonics Laboratory

Instructor: Guifang Li, CREOL 278,

Phone 823-6811, E-mail: li@creol.ucf.edu

Time: Fridays 1:00pm - 5:00pm

TA: Ning Wang and Huiyuan Liu

Office Hours: Tuesday 9:00-12:00 CREOL 278 or by

appointment (no appointments on Friday)

Goals:

- 1. Relate what you have learnt in classroom to what you can see in the lab of a variety topics related to photonics.
- 2. Take away the "fear factor" by providing experience of operating various equipment.
- 3. Establish good practices in experimentation including keeping a lab notebook and keeping the experiment station clean.
- 4. Learn to write lab reports of journal-manuscript quality/style.

Preliminary Schedule

8/26	Introduction, Show & Tell
	Q&A on Beam Propagation, Waveguides and AO Notes
9/2	LabView, Beam Propagation, Waveguides, AO
9/9	LabView, Beam Propagation, Waveguides, AO
9/16	LabView, Beam Propagation, Waveguides, AO
9/23	LabView, Beam Propagation, Waveguides, AO
9/30	Q&A on Fiber, E-O, LCD and LD Notes (Make up) (Travel Day for me)
10/7	E-O, LCD, Fiber sensor, LD
10/14	E-O, LCD, Fiber sensor, LD
10/21	E-O, LCD, Fiber sensor, LD
10/28	E-O, LCD, Fiber sensor, LD
1 1 / 4	
11/4	Q&A on Fiber-Optic Communications/WDM Notes (Make up)
11/11	Fiber-Optic Link, WDM, VPI-Simulation of Systems
11/18	Fiber-Optic Link, WDM, VPI-Simulation of Systems (Travel Day for me)
11/25	Thanksgiving
12/2	Fiber-Optic Link, WDM, VPI-Simulation of Systems

Instructional Materials

- Lecture Notes
- Lab Procedure

References

- Fundamentals of Photonics by B. E. A. Saleh and M. C. Teich, Wiley.
- Optical Electronics in Modern Communications by A. Yariv, Oxford.

Laboratory Notebook

- Goal is to be able to
 - Reproduce the experimental setup (hardware)
 - Repeat the experiment by recording the details of the laboratory settings
- Notebook Organizations
 - Date, Partner(s)
 - Equipment List include model #
 - Schematic Drawing and Raw Data for each lab procedure

Lab Reports

LabView: Short Lab Report

Beam Propagation: Short Lab Report

Waveguides: Short Lab Report

Acousto-Optics: Full Lab Report (Practice)

Electro-Optics: Full Lab Report

Liquid Crystal Display: Short Lab Report

Fiber Sensor: Full Lab Report

Laser Diode: Short Lab Report

Fiber-Optic Link: Full Lab Report

Wavelength-Division Multiplexing: Short Lab Report

Simulation of Photonic Systems: Short Lab Report

Lab reports are due Thursday night.

Short Lab Reports

OSE 6455L - Photonics Laboratory - Fall 2009

,11111011	t 1:
	Plot of measured power vs. razor position for the Gaussian beam
How to	o obtain beam intensity profile? Describe procedures used to go from plc
	above to plot below.
Plo	t of the intensity profile for the beam and a Gaussian fit for the profile.

ssignment 2:			
a. Plot of W(z) vs. z			
· · ·			
Far Field Divergence Angle=?			
b. Calculation of W_0 from the average Far Field Divergence Angle, with $\lambda = 632.8$ nm			
052.01111			
c. Computed parameters of the Gaussian beam inside the laser cavity. Is the waist			
inside the cavity?			
·			

Full Lab Reports

- Write the Lab report <u>as if you have just discovered the phenomenon/experimental method for the first time.</u>
- Style and Quality Consistent with Journal Manuscripts (see Optics Express for examples)
- The focus on the lab report is the science behind the experiments, not the Experiments/Procedures themselves.
- Lab Report Organization
 - Title & Abstract
 - Introduction
 - Theoretical Background:
 - present all formula used for interpretation of data in a coherent and concise way by independent literature search.
 - Use your own language to complete this section
 - Experimental Results: As many sections as necessary for each phenomenon you observed/investigated in the lab.
 - Conclusions
- Lab Report should answer all the questions raised in the Lab Procedures; they can be anywhere in the lab report where they fit.
- Lab Reports for team members should be substantially dissimilar to show independent work.
- Short Reports Due 1 week from date of lab. Full reports due 2 weeks from date of lab. No late reports.

Full Lab Report Recommendations

- Use third person
- Number sections/subsections
- Focus on science, results, rather than the lab itself. Lab procedures should be discussed, if necessary, as part of the whole <u>coherent</u> <u>scientific</u> story.
- Theory cannot be too much alike the lecture notes
- Pay attention to Typo, grammar, equation editors
- Read a few journal papers that have both theory and experiments

Grading Policy

•	On-Time Attendance/Active Involvement:	7%
•	Pre-Lab:	9%
•	Lab Notebook:	7%
•	3 Full Lab Reports:	42%
•	1 Full Lab Report (Practice):	7%
•	7 Short Lab Reports:	28%

Will have +/- grades

A: >95; A-:90-94; B+:85-89; B:80-84

Enjoy the Lab!