Course Syllabus
OSE 6525 - Laser Engineering

Instructor: Dr. Axel Schülzgen
Office: Room A115 CREOL Building
Email: axel@creol.ucf.edu

Class Hours: Tuesdays 5:00 – 7:30 p.m. at Lockheed Martin, room: TBD
Office: Room A115 CREOL Building
Email: axel@creol.ucf.edu

Office Hours: Monday, Wednesday 1:00 – 2:00 p.m., subject to change
I will be in my office at these times, but of course I will be happy to discuss the material with you anytime. Often, I get questions via e-mail that can be quickly answered.

Course description and learning outcomes:
This course is titled “Laser Engineering” but could as well have been titled “Laser Principles”. It is an introductory course in lasers, so in fact there is more “Laser Principles” and little “Engineering” in it. The chief purpose is for students to obtain a solid understanding of the basic principles of lasers and to be familiar with the operation of most common laser types. The course is taught in the classical approximation so a knowledge of quantum mechanics is not required.

This course is being taught to satisfy the requirements of the optics Ph.D. curriculum.

The primary learning outcomes are:

- To understand the difference between laser and thermal radiation.
- To become conversant with the Einstein treatment of absorption and emission and to be able to describe laser media with rate equations, and to solve these.
- To understand gain saturation and broadening and to calculate cw laser output powers.
- To determine stability of laser cavities and calculate Gaussian laser cavity modes, as well as how they propagate in free space and how they are focused.
- To understand and calculate pulsed laser outputs.
- To be knowledgeable about the principles of operation of the most common laser types.
Topics: (A detailed schedule with dates will be posted on the website.)

Introduction, history, properties of laser light
Blackbody radiation, Planck's theorem

Absorption, spontaneous & stimulated emission
Rate Equations
Line broadening mechanisms, homogeneously and inhomogeneously broadened lines
Saturation effects

Energy levels: atoms, molecules, solid-state
3 and 4 level systems
Laser threshold and cw operation, Quasi-3 level lasers, optimum output coupling, ASE

Paraxial beams, cavity modes, ABCD matrices, Stable and unstable resonators
Gaussian beams
Properties of resonators
Passive resonators, eigenmodes, cavity Q

Electrical and optical pumping
Transient behavior, relaxation oscillation
Q-switching and mode-locking, short pulse characterization,

Semiconductors: band structure & density of states
Absorption and gain spectra, low-dimensional semiconductors

Semiconductor diodes, homojunction and heterojunction lasers
Quantum well lasers and VCSELs
Crystalline lasers
Glass and fiber lasers
Gas lasers: amplification in atoms, ions and molecules
Frequency conversion: SHG, sum frequency, parametric amplification and oscillation

Textbook:
Reading assignments will be taken from this textbook.

Other useful reference books:
“Laser Electronics”, J. Verdeyen, (Prentice-Hall)
“Laser Fundamentals” W. T. Silfvast, (Cambridge)
“Lasers” A.E. Siegman
Almost any other text titled “…Lasers…” will probably provide insight on the topic.
Class Web site:
http://webcourses.ucf.edu

This site will reflect latest changes and contain homework and reading assignments. Slides used for classes will be available for download before each class. If you want a hard copy of the slides, print them. You are required to read the notes prior to class.

Teaching and Learning

Most people learn things for themselves. As a teacher, my job is to help you learn the material. In order to help you learn in depth, I plan to use some class time for detailed discussion of concepts and group project work. Credit will be given for these activities. These types of activities require that students actually carry out reading assignments prior to class. Hence I will occasionally set quizzes to ensure that students come to class prepared.

Grading Policy:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>15%</td>
</tr>
<tr>
<td>quizzes</td>
<td>5%</td>
</tr>
<tr>
<td>In class participation</td>
<td>5%</td>
</tr>
<tr>
<td>Two mid-terms, each worth 20% of total grade</td>
<td>40%</td>
</tr>
<tr>
<td>Final exam</td>
<td>35%</td>
</tr>
</tbody>
</table>

All students are expected to participate in the mid-term and final exams.

Final Exam: May 1, 2018, 1:00 p.m - 3:50 p.m.

Grading Scale:

90-100 A
80-89 B
70-79 C
60-69 D
0 - 59 F

Academic Activity:

As of Fall 2014, all faculty members are required to document students' academic activity at the beginning of each course. In order to document that you began this course, please complete the following academic activity by the end of the first week of classes, or as soon as possible after adding the course, but no later than August 24, 2018. Failure to do so will result in a delay in the disbursement of your financial aid.

Assignment: In one paragraph, explain why you are taking the laser engineering course? Send your answer per email or upload it. The deadline for this assignment is August 24, 2018.
Professionalism Policy:

Per university policy and classroom etiquette; mobile phones, iPods, etc. **must be silenced** during all classroom lectures. Those not heeding this rule will be asked to leave the classroom immediately so as to not disrupt the learning environment. Please arrive on time for all class meetings. Students who habitually disturb the class by talking, arriving late, etc., and have been warned may suffer a reduction in their final class grade.

Academic Conduct Policy:

Academic dishonesty in any form will not be tolerated. As in all University courses, The Golden Rules of Conduct will be applied. Violations of these rules will result in a record of the infraction being placed in your file and receiving a zero on the work in question **AT A MINIMUM.** At the instructor’s discretion, you may also receive a failing grade for the course. Confirmation of such incidents can also result in expulsion from the University.

Class Schedule

<table>
<thead>
<tr>
<th>DAY</th>
<th>DATE</th>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thu</td>
<td>8/23/2018</td>
<td>Lecture 1</td>
<td>Introduction</td>
</tr>
<tr>
<td>Thu</td>
<td>8/23/2018</td>
<td>Lecture 2</td>
<td>Introduction, history, properties of laser light</td>
</tr>
<tr>
<td>Thu</td>
<td>8/30/2018</td>
<td>Lecture 3</td>
<td>Int'n radiation/atoms & ions</td>
</tr>
<tr>
<td>Thu</td>
<td>8/30/2018</td>
<td>Lecture 4</td>
<td>Blackbody radiation, Planck’s theorem</td>
</tr>
<tr>
<td>Thu</td>
<td>9/6/2018</td>
<td>Lecture 5</td>
<td>Absorption, spontaneous & stimulated emission</td>
</tr>
<tr>
<td>Thu</td>
<td>9/6/2018</td>
<td>Lecture 6</td>
<td>Line broadening mechanisms, homogeneously broadened lines</td>
</tr>
<tr>
<td>Thu</td>
<td>9/6/2018</td>
<td>Lecture 7</td>
<td>Line broadening mechanisms, inhomogeneously broadened lines</td>
</tr>
<tr>
<td>Thu</td>
<td>9/13/2018</td>
<td>Lecture 8</td>
<td>The laser</td>
</tr>
<tr>
<td>Thu</td>
<td>9/13/2018</td>
<td>Lecture 9</td>
<td>Saturation effects</td>
</tr>
<tr>
<td>Thu</td>
<td>9/13/2018</td>
<td>Lecture 10</td>
<td>Saturation of inhom. broadened lines, spectral hole burning</td>
</tr>
<tr>
<td>Thu</td>
<td>9/20/2018</td>
<td>Lecture 11</td>
<td>The laser, Energy levels: atoms, molecules, solid-state</td>
</tr>
<tr>
<td>Thu</td>
<td>9/20/2018</td>
<td>Lecture 12</td>
<td>2, 3, and 4-level lasers</td>
</tr>
<tr>
<td>Thu</td>
<td>9/27/2018</td>
<td>Lecture 13</td>
<td>Continuous wave operation, output coupling, space independent model</td>
</tr>
<tr>
<td>Thu</td>
<td>10/4/2018</td>
<td>Lecture 14</td>
<td>Light interaction with matter: The Laser</td>
</tr>
<tr>
<td>Thu</td>
<td>10/4/2018</td>
<td>Lecture 15</td>
<td>Modes in lasers</td>
</tr>
<tr>
<td>Thu</td>
<td>10/11/2018</td>
<td>Lecture 16</td>
<td>Paraxial beams, modes, ABCD matrices, resonator stability</td>
</tr>
<tr>
<td>Thu</td>
<td>10/11/2018</td>
<td>Lecture 17</td>
<td>Modes in lasers</td>
</tr>
<tr>
<td>Thu</td>
<td>10/11/2018</td>
<td>Lecture 18</td>
<td>Gaussian beams, higher order modes</td>
</tr>
<tr>
<td>Thu</td>
<td>10/11/2018</td>
<td>Lecture 19</td>
<td>Passive resonators, eigenmodes, stability</td>
</tr>
<tr>
<td>Thu</td>
<td>10/11/2018</td>
<td>Lecture 20</td>
<td>Multiple modes, unstable resonators, Fabry-Perot interferometer</td>
</tr>
<tr>
<td>Thu</td>
<td>10/18/2018</td>
<td>Lecture 21</td>
<td>Longitudinal modes, cavity Q</td>
</tr>
<tr>
<td>Tue</td>
<td>10/25/2018</td>
<td>Lecture 22</td>
<td>Laser pumping</td>
</tr>
<tr>
<td>Tue</td>
<td>10/25/2018</td>
<td>Lecture 23</td>
<td>Electrical and optical pumping methods</td>
</tr>
<tr>
<td>Tue</td>
<td>10/25/2018</td>
<td>Lecture 24</td>
<td>Transient behavior, relaxation oscillation</td>
</tr>
<tr>
<td>Tue</td>
<td>10/25/2018</td>
<td>Lecture 25</td>
<td>Q-switching</td>
</tr>
<tr>
<td>Tue</td>
<td>11/1/2018</td>
<td>Lecture 26</td>
<td>Mode-locking</td>
</tr>
<tr>
<td>Tue</td>
<td>11/1/2018</td>
<td>Lecture 27</td>
<td>Measurement of laser dynamics, recap</td>
</tr>
<tr>
<td>Thu</td>
<td>11/8/2018</td>
<td>Lecture 28</td>
<td>Modes and laser dynamics</td>
</tr>
<tr>
<td>Thu</td>
<td>11/15/2018</td>
<td>Lecture 29</td>
<td>Modes and laser dynamics</td>
</tr>
<tr>
<td>Tue</td>
<td>11/15/2018</td>
<td>Lecture 30</td>
<td>Electronic structure of semiconductors, optical spectra</td>
</tr>
<tr>
<td>Thu</td>
<td>11/29/2018</td>
<td>Lecture 31</td>
<td>Gain in semiconductors, spectra of quantum structures</td>
</tr>
<tr>
<td>Tue</td>
<td>11/29/2018</td>
<td>Lecture 32</td>
<td>Semiconductor diodes, quantum well lasers and VCSELs</td>
</tr>
<tr>
<td>Tue</td>
<td>11/29/2018</td>
<td>Lecture 33</td>
<td>Selected lasers: vibronic, excimer, fiber lasers</td>
</tr>
</tbody>
</table>

Final Exam

12/6/2018; 5:00 p.m - 7:50 p.m