SEVERATE OF OPTICS AND PHOTONICS

Course Syllabus

OSE-4470L Fiber Optic Communication Laboratory, 1 CREDIT HOUR

Instructor:	Guifang Li
Email:	li@ucf.edu
Phone:	(407) 823-6811
TAs:	Alireza Fardoost & Sailing Zhang
Office:	53-A239
Office Hours:	Before/After class

Term: Fall 2020 Class Meeting Days: Monday Class Meeting Time: 8:30am – 11:20am (I) 3:00pm – 5:50pm (II) Class Location: CREOL: A210 Website: webcourses@ucf

Additional Notes: Simple questions can be quickly answered via email. For more elaborate discussions, come see me before or after the laboratory session, or by appointment.

Course Catalog Description: Pre/Co-requisites: OSE 4470 Fiber-Optic Communications

Detailed Course Description and Learning Outcomes:

Detailed Description:

This lab course is associated with the theory course on the same topic: OSE 4470 Fiber-Optic Communications.

- 1. This laboratory course will enable students to relate what they have learnt in classroom to experimental observations.
- 2. Take away the "fear factor" by providing experience of operating various equipment.
- 3. Establish good practices in experimentation including accurate data collection, critical thinking, analysis of data, and identifying sources of error.
- 4. Learn to write lab reports.

Learning Outcomes and Measures:

Upon completing this course, students will become familiar with various fiber optic components and systems and know how to:

- Couple light in and out of fibers
- Connect fibers
- Measure losses in fibers
- Measure the performance of analog and digital fiber links

Topics: (See detailed schedule with dates at the end of this document)

The experiments are set up to cover three main topics:

- 1. The optical fiber as a transmission channel.
- 2. Optoelectronic devices used in transmitters, receivers, and multiplexers.
- 3. Overall communication system performance.
 - Losses associated with coupling light into or between fibers are experimentally measured.

• Performance metrics for analog and digital communication will be introduced and quantified. A wavelength-division multiplexing (WDM) system will be built and qualitatively tested.