Outline

Military Imaging Bands – Let’s Orient Ourselves

Primary Military Imaging Modes and Challenges
- Target Acquisition
- Intelligence, Surveillance, and Reconnaissance
- Persistent Surveillance

New Imaging Technologies in the Infrared (just examples)
- Army: Third Gen FLIR
- Navy: Active/Passive, Large Focal Planes
- Air Force: Synthetic Aperture Ladar

mmW and Thz: Force Protection and Situational Awareness

Some Major Challenges (all in one, ped, swap/cost, ATR, IEDs, etc)
Military Imaging Bands

![Graph showing transmission vs. wavelength with different imaging bands labeled: UV, Visible, Near and short wave infrared, Mid wave Infrared, Long wave Infrared.](image)
Military Imaging Bands

LWIR

MWIR

SWIR

Visible
The probability of ID for a T72 depends on whether the alternative is a T62 or M60.

<table>
<thead>
<tr>
<th>Range in kilometers</th>
<th>Probability</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Military Imaging – Classic ISR

Single Pass Real-Time Mosaic
Location: Bay Area
Altitude: 33,000 Feet
Velocity: 500 Knots
Area Shown: 1,020 Square Miles
Capture Time: 4.5 Minutes
Military Imaging – P-ISR

2005, CA-247
Current System

DB-WAPSS Sensor (14-Mpixel IR-only version)
New Imaging Technologies: Army [Third Gen FLIR]

- **Day**
 - **Dual Band (MWIR/LWIR)**
 - **Dual F-Number**

- **Night**
 - **Low F-Number**
 - **WFOV**
 - **Search/Detect**

- **High F-Number**
 - **NFOV**
 - **Identification**
New Imaging Technologies: Army [Third Gen FLIR]

<table>
<thead>
<tr>
<th>Priority</th>
<th>Issue</th>
<th>MWIR</th>
<th>LWIR</th>
<th>Same</th>
<th>3rd Gen</th>
<th>Results Yet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Long Range Identification</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AITR Performance: MWIR Day Vs Night</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AITR Performance: Spectral Vs Broadband</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Burning Barrels, Veiling Glare, Bloom, Crosstalk</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Conventional Target Contrast</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Human Target Contrast</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Conventional and Urban Background Contrast</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Conventional Search (MW Vs LW Vs 3rdGen)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Urban Search (MW Vs LW Vs 3rdGen)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Long Range ID With LCE and Boost</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cold Weather Performance</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turbulence</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Integration Time</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Camouflage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Conventional Target Spectral Exploitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Urban Target Spectral Exploitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Smoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Pilotage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Wet Targets</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Path Radiance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Platform: LHD & CVN
Purpose: Long range asymmetric threat detection, identification, and intent determination
Number of Platforms: 19
Schedule: Transition from 6.3 in 2010
Description: Short wave infrared (active range gated laser illuminated and passive) and midwave infrared upgrade to the SeaSparrow weapon system director sensors

Band(s): Short Wave (1.52-1.62, 1.55 um) and MWIR (3-4.3 microns)
Fields of View:
- SWIR F/8, 9.6Hx7.2V, 2.4Hx1.8V, 0.6Hx0.45V, 0.46Hx0.34V
- MWIR F/4 – 9.6Hx7.2V, 2.4Hx1.8V, 0.6Hx0.45V
Detector: 640x480x25um MCT capable of APD operation 30hz
Aperture size: 10”
Primary Target: Asymmetric surface and air threats
Naval Research Laboratory

New Imaging Technologies: Navy [Large Format Arrays]

Mid-Afternoon

Early AM

Night
New Imaging Technologies: Air Force
Synthetic Aperture Ladar

- Synthetic aperture imaging (SAR or SAL) uses phase history to differentiate scatterer location win a scene based upon precise knowledge of the sensor motion and the assumption that the scatterers are stationary.
- Errors in the knowledge of sensor motion and unknown target motion lead to image distortion.

SAL/SAR Comparison
- Wavelengths are \(~10000\)x shorter than X-Band SAR
- Impacts
 - Beamwidth \(~10000\)x less
 - Collection time \(<10000\)x less
 - Motion \(~10000\)x more Sensitive (mitigated by short collection time)
 - Greater Atmospheric Sensitivity

Ricklin et al.
New Imaging Technologies: Air Force
Coherent Imaging

Rabb et. al.
mmW and THz Imaging

Low resolution compared to electro-optical and infrared
Not good for long range target acquisition

Good for penetration
mmW: Clouds, Fog, Sand, etc.
THz: fabrics

Applications: Force protection, Situational Awareness, Obscured Pilotage
mmW Imaging
mmW Imaging

- Provides *all-weather, day/night imaging* including cloud, fog, smoke, and dust penetration.
- “Cold” sky delivers *high effective contrast* for many man-made targets independent of most camouflage.
- Systems operate using passive detection enabling *covert operation*.
- *Blowing dust/sand has minimal impact* on “passive” mmW for brownout distance scales.
- Imagery is *easily interpreted* by operator as it is similar to FLIR.

Courtesy of Mr. Bruce Wallace, mmW Concepts, LLC
THz Imaging
Future Challenges

Multi-Modal Imaging

Processing Exploitation and Dissemination

Search/Moving Search (e.g., Improvised Explosive Devices)

SWAP and Cost

Automatic Target Recognition (ATR/ATD) – Autonomous Systems
Multi-modal Imaging
Multi-modal Imaging

ISR

- 50 km
- 6 km

P-ISR

- 12 km

Target Acquisition

42,000 feet

High Resolution
- 0.5 Meter
- 12k X 12k Focal Plane
- 144 Sq Km/sec
- Flight Rate Limited to 200sqmi/min or 1000 sqmi/min instantaneous
- Gimbal Scanned
- Straights of Hormuz 3,600 sq. mi. in 10 minutes typical

High Resolution
- 0.5 meters
- 12km X 12km focal plane
- 12km Diameter Coverage At 1 Hz Revisit
- 24km Diameter coverage At 0.25 Hz Revisit
- 50km Diameter Coverage At 30 sec. Revisit

Ultrahigh Resolution
- 5” Resolution
- Adequate for Human Activity discrimination
- On Boats / ship Deck
- 10 X Magnification Optics Required

“All In One” DAY AND NIGHT
Massive Amounts of Data

Manpower Intensive

Distributed Common Ground Station is primary ISR Asset
Search
Search

Now consider a moving platform!
Future Challenges

Multi-Modal Imaging

Processing Exploitation and Dissemination

Search/Moving Search (e.g., Improvised Explosive Devices)

SWAP and Cost

Automatic Target Recognition (ATR/ATD) – Autonomous Systems
Summary

There are no lack of imaging challenges in DoD
 Faster
 Further
 All Encompassing (Wide Areas)
 Anytime/Anywhere (Dirty Battlefield/Sea State 4)

There is usually a disconnect between DoD labs and Academics

Research includes materials, components, and systems