Advanced Parameter Imaging of Solar Cells

Mohammad Jobayer Hossain
CREOL, The College of Optics and Photonics
University of Central Florida, Orlando, FL, 32816, USA
Solar Cell Characterization

- Need for characterization
 - How they operate
 - Engineering them to be better

- Parameters
 - Open circuit voltage, V_{OC}
 - Short circuit density, J_{SC}
 - Fill factor, FF
 - Series resistance, R_S
 - Dark sat. current density, J_0

$$J = J_{pv} - J_{dark} - J_{shunt}$$

$$J = J_{pv} - J_0 \left[\exp \left(\frac{V + R_S \cdot J}{nKT} \right) - 1 \right] - \frac{V + R_S \cdot J}{R_{shunt}}$$

- Variation of parameters over surface
 - Identify, decouple and quantify losses; better design; quantifying variation and process control

Efficiency

$$\eta = \frac{V_{MPP} \cdot J_{MPP}}{P_{in}} = \frac{V_{OC} \cdot J_{SC} \cdot FF}{P_{in}}$$
Luminescence Imaging

- Key features
 - 808 nm laser
 - 920 nm filter, 1MP CCD camera

- Luminescence measurement
 - PL: optical excitation
 - EL: electrical excitation
 - Biased PL: optical + electrical

- Key equations

\[V_{xy} = V_T \cdot \log \left(\frac{I_{Hxy} - B_{xy} \cdot I_H}{C_{xy}} \right) \]

\[B_{xy} = \frac{I_{xy - SC}}{I_{L - SC}} \]

\[C_{xy} = I_{Lxy} \cdot \exp \left(\frac{V_{OC} - L}{V_T} \right) \]

- B: background, C: calibration constant

Identifying and Quantifying Losses

- Terminal connected diode model
 - Combination of parallel diodes
 - Local parameters are different

\[V_{\text{term}} - V_{xy} = R_{xy} \left[J_{0-xy} \exp \left(\frac{V_{xy}}{nV_T} \right) - J_{ph-xy} \right] \]

High Speed Quantum Efficiency Imaging

- **EQE and R measurement (FlashQE)**
 - EQE and Reflectance (R)
 - Point by point scanning
 - Discrete wavelengths
 - 365 nm to 1280 nm
 - Integrated sphere

\[
J_{sc} = e \int_{365 \text{ nm}}^{1280 \text{ nm}} EQE(\lambda)\phi_{in}(\lambda) \, d\lambda \\
IQE(\lambda) = \frac{EQE(\lambda)}{1 - R}
\]

Reflection loss
- a. Front reflection
- b. Escape reflection
Parasitic Absorption & Recombination
- c. Emitter loss
- d. Loss in bulk and rear

High Speed Quantum Efficiency Imaging (Cont...)

- EQE measurement

\[IQE(\lambda) = \frac{1}{k} \exp \left(-\frac{W_d}{L_a(\lambda)} \right) \frac{1}{1 + \frac{L_a(\lambda)}{L_{eff}}} \]

\[A_e,l(\lambda) = 1 - IQE(\lambda) \cdot \left(1 - \frac{L_a(\lambda)}{L_{eff}} \right) \]

\[A_e,II(\lambda) = 1 - \exp \left(-\frac{W_d}{L_a(\lambda)} \right) \]

- R measurement

\[t = \frac{\lambda_{min}}{4n} \]

Incorporation of J_{SC-xy} with PL

\[V_{term} - V_{xy} = R_{xy} \left[J_{0-xy} \ast \exp \left(\frac{V_{xy}}{nV_T} \right) - J_{ph-xy} \right] \]

- Spatially resolved J_{SC}
 - A uniform J_{SC} is normally used in literature
 - Concerns about accuracy with $J_{SC}^{1,2,3}$
- Cell parameters from IV measurement
 - J_{SC}: 32.2 mA/cm², V_{OC}: 0.612 V
 - n: 1.3, R_S: 0.2 Ωcm², J_0: 3.39x10^{-10} A/cm²

Incorporation of J_{SC-xy} with PL: R_S

Cell $R_S=0.2 \ \Omega \text{cm}^2$

- Incorporation of J_{SC-xy} does not change R_S distribution much
 - Using J_{SC} is safe
 - With $n=1.3$, distribution widens, mode being unchanged
Incorporation of $J_{\text{SC-xy}}$ with PL: J_0

Cell $J_0 = 3.39 \times 10^{-10} \text{ A/cm}^2$

- Incorporation of $J_{\text{SC-xy}}$ does not change J_0 distribution much
 - Using J_{SC} is safe
 - Recombination shifts to higher value with $n=1.3$ (practical diode)
Incorporation of J_{SC-xy} with PL: Efficiency ($J-V$ curve fitting)

Cell $\eta = 15.4\%$

\[J_{xy} = J_{sc-xy} - J_0-xy \left[\exp \left(\frac{V_{xy} + R_{xy} \cdot J_{sc-xy}}{nV_T} \right) - 1 \right] \]

- Incorporation of J_{SC-xy} changes efficiency distribution drastically
 - Using J_{SC-xy} is better
 - $n=1.3$ provides reduced efficiency
Parameter images are important
 • Decoupling losses and finding their root causes
 • Making better performing solar cells

Incorporation of J_{SC-xy} with PL
 • More accurate representation of parameter images
 • Not so much impact on R_S and J_0 but big impact on efficiency images
Thank You
Questions?
Solar Cell Structure

AI-BSF

Front side ARC and passivation layer(s)

n^+ emitter

Multi p-type Si

p^+ BSF

Rear contact layer

Front contacts