
 1

First Implementation of the
Virtual Reality

Dynamic Anatomy Tool

By

YOHAN BAILLOT

MS Electrical Engineering, Montpellier, France, 1996

Graduate Committee

Dr. Jannick Rolland, CREOL and School of Optics,
joint appointment School of Computer Science.

Dr. Michael Moshell, School of Computer Science.
Dr. Rebecca Parsons, School of Computer Science.

Dr. Niels Da Vitoria Lobo, School of Computer Science.
Dr. Kurt Lin, Mechanical and Aerospace Engineering department,

Institute for Simulation and Training.

Submitted in partial fulfillment of the requirements
for the degree Master of Science

in the School of Computer Science
in the College of Arts and Sciences
at the University of Central Florida

Fall Term
1998

 2

ABSTRACT

This document summarizes one and half year of research and development in
the frame of a larger 5-year research project proposed and led by Dr. Rolland:
the Virtual Reality Dynamic Anatomy tool (VRDA). Several researchers from
different disciplines including Computer Sciences, Biomedical Engineering, and
Psychology participate in this project. The project will lead to the development of
a tool allowing a user to see a virtual model of the inside of an anatomical joint
superimposed on the corresponding joint of a subject. As the user will manipulate
the joint of the subject and move around, the virtual model of the inside of the
joint will move accordingly. Because of the merging of real and virtual information
as well as the interactivity provided by the system, it is expected that this tool will
help students form better mental models of dynamic inner anatomy.

This research provides a framework for the first implementation of the VRDA tool
and discusses more specifically the modeling, visualization, and registration
issues. The sections of this document are organized as follows. We first
introduce in section 1 the problems to solve and set our assumptions. Then in
section 2, we review current methods and commercially available software. In
section 3, we state our approach, propose some implementations and new
techniques, and give experimental results as well. Finally, we conclude with the
contributions of this research in section 4 and give some line of sight for future
work followed by a bibliography.

 3

AACCKKNNOOWWLLEEDDGGMMEENNTTSS

I want to thanks my parents that gave me a hard time to make me study when I
was younger because it was a good start to reach the point where I am today. I
want to thanks Dr Rolland who gave me the opportunity to stay in the US and
influence me to get this degree after I completed some work for her at UNC,
where I discovered Virtual Reality. I want to thank Dr. Moshell and Dr Lin, as well
as the rest of my committee, for reviewing my work during this research. Finally, I
want to thank my few friends among the large number of people I just know to
help me during the writing of this document, including my current roommates
Anna and Scott. A First award of the National Institute of Health (NIH) (1-R29-
LM06322-01A1) currently supports the VRDA research.

 4

TTAABBLLEE OOFF CCOONNTTEENNTTSS

 Page

LIST OF FIGURES 6
INTRODUCTION 8
1. AIMS OF THE RESEARCH 10

1.1. Modeling of the motion of an anatomical joint 10
1.2. Simulation of the joint motion 11
1.3. Superimposition of the virtual model on a real joint 11

2. CURRENT MODELING APPROACHES 13
2.1. The human knee joint 14
2.2. Modeling methods 17

2.2.1 Methods using approximation 18
2.2.2 Use of constrained rigid body dynamics 20

2.3. Off-the-shelf software packages 21
3. A NOVEL ALGORITHM FOR MODELING ANATOMICAL JOINTS 24

MOTIONS
3.1. Overall approach 24
3.2. Stability search paradigm 25
3.3. Determination of the contact points and normals 28
3.4. Rotation prediction 30
3.5. Translation prediction 32
3.6. Detection of cycle 35
3.7. Curvature and contact points issues 37
3.8. Contributions of the algorithm 39

4. IMPLEMENTATION AND VALIDATION OF THE ALGORITHM 41
4.1. Algorithm implementation 41
4.2. Algorithm validation 44

4.2.1 Test of the translation feature 44
4.2.2 Test of the rotation feature 46

5. APPLICATION OF THE ALGORITHM TO THE KNEE JOINT 49
5.1. Modeling assumptions 49
5.2. Generic 3D model of the knee bones 51
5.3. Modeling application modifications 53
5.4. Results of the modeling of the knee joint and improvements 55

6. SIMULATION 59
6.1. Processing of the model using Open Inventor 59
6.2. Performer application 61

6.2.1 Simulation Implementation 62
6.2.2 Simulation results 65

7. AUGMENTED REALITY VISUALIZATION 67
7.1.1 The visualization device 67
7.1.2 The control devices 71

 5

7.1.3 The tracking devices 73
8. A PROPOSED VISUAL CALIBRATION METHOD 77

8.1. Viewport measurement 78
8.2. Optical distortions compensation 80
8.3. Field of view and eyepoints measurements 82
8.4. Interpupilliary distance adjustment 85
8.5. Tracking calibration 86

9. FUTURE WORK 93
CONCLUSION 96
APPENDIX A: Rigid body dynamics 98
APPENDIX B: Modeling configuration file 101
APPENDIX C: Rendering types 105
APPENDIX D: Transformation matrices 108
LIST OF REFERENCES 111

 6

LLIISSTT OOFF FFIIGGUURREESS

 Page

Figure 1: VRDA tool concept 8

Figure 2: The human knee joint 13

Figure 3: Instant center of rotation in the knee joint 16

Figure 4: Instant axis of rotation in the knee joint 16

Figure 5: Flow chart of the stability algorithm 27

Figure 6: Rotation prediction (1) 31

Figure 7: Rotation prediction (2) 31

Figure 8: Translation prediction (1) 33

Figure 9: Translation prediction (2) 35

Figure 10: Contact points and curvature issues 38

Figure 11: A ball falling in a dish 45

Figure 12: A bar falling between two pyramids 46

Figure 13: A pyramidal cap falling in a pyramidal sink 48

Figure 14: Generic geometric knee model 51

Figure 15: Modeling algorithm applied on the knee 55

Figure 16: Smoothing of the motion curves 57

Figure 17: The OpenInventor tool GVIEW 60

Figure 18: Simulation sample frames 66

Figure 19: The bench-prototype display 68

 7

Figure 20: See-trough stereoscopic display principle 69

Figure 21: Optotrak 3020 tracking system 75

Figure 22: Viewport area 79

Figure 23: Optical distortions compensation 81

Figure 24: Method to determine the eye-points and the field of view 83

Figure 25: Referentials map 89

Figure 26: Registration results 93

 8

Figure 1: A medical student is
manipulating the joint (top) and sees a
3D synthetic model of the joint (bottom)

IINNTTRROODDUUCCTTIIOONN

The Virtual Reality Dynamic Anatomy tool

(VRDA) is a device that will allow a user to

see the inner components of an anatomical

joint, as if the user had 3D X-ray vision

(Rolland, 97). As the user manipulates the

joint of a subject as illustrated in Figure 1

(top frame), a tracking sensor will measure

the attitude of the joint. Using this

information, a synthetic image of the inside

of the joint is shown to the user on top of

the real joint and in the same attitude using

a Head-Mounted Display. An illustration of the view the user should have is

shown in Figure 1 (bottom frame).

Medical students and professionals need to understand the 3D relationship of

internal anatomical structures and the significance of body parts� movement.

Current learning processes use still pictures, movies, training simulations, and

cadaver dissection labs. On the one hand, these representations usually do not

visualize both internal and external structures. On the other hand, even training

simulations do not provide the spontaneous feedback that a living human

palpation would provide.

 9

The VRDA tool will superimpose internal 3D structures in motion on top of a

subject�s anatomical joint so that the student will have access to visual as well as

tactile cues when learning how the joint behaves. Therefore, we anticipate that

this tool will help students to form more accurate mental models of the joint

motions in shorter time periods (Wright, 95).

The presented research has been done to create a first implementation of the

tool that will allow for further developments. In the following, chapter 1 presents

the goals required to realize the tool. Chapter 2 reviews the various methods to

model the anatomical joint motions. Chapter 3 presents a new motion modeling

method, and chapter 4 shows the validity of the approach on test objects.

Chapter 5 presents modeling results on the knee joint. Chapter 6 presents the

core simulation application. Chapter 7 describes the Augmented Reality setup

used for the VRDA tool, and Chapter 8 describes a novel method to calibrate it.

 10

11 AAIIMMSS OOFF TTHHEE RREESSEEAARRCCHH

We identified three major goals for the research related to a first implementation

of the VRDA tool: modeling, simulation, and superimposition. These parts are

now detailed respectively.

11..11 MMooddeell iinngg ooff tthhee mmoott iioonn ooff aann aannaattoommiiccaall jjooiinntt

The synthetic model represented on the subject joint is an animated set of three-

dimensional models representing the components inside the corresponding

anatomical joint. Motion modeling is the task that consists of specifying what is

the position and orientation of these components as the joint is animated. The

modeling is done at discrete points of the animation, called motion steps or key

frames.

The components of the model of the joint represent realistically the anatomical

parts of the joint. These components are naturally complex in shape, and some

of their features hide the contact points. For this reason, specifying manually the

relative attitude of the components at each motion step without creating any gap

or intersection between the components can be difficult. Moreover, this task

becomes tedious when the number of motion steps considered is important.

Additionally, because the synthetic model used must be adapted to the subject

joint so that it appears to realistically represent the inside, the model must be

scaled. In the future, the actual geometry of the components of the joint of the

 11

subject could be segmented from a detection procedure like X-rays and used to

represent the synthetic model. To create systematically a motion model for any

anatomical joint efficiently, an automatic method to model the motion of the joint

must be used. The main contribution of the presented research is the design of a

way to realize this task.

11..22 SSiimmuullaatt iioonn ooff tthhee jjooiinntt mmoott iioonn

To evaluate the motion model developed on the considered joint, a replay of the

modeled motion of the joint must be done. The animation can be smoothly

replayed using interpolation between the specified motion steps to obtain a

continuous animation. This animation must be examinable on a monitor from any

viewpoint in order to assess completely the model.

The subjective impression that the user is looking at a real joint must be realized

by using real-time realistic rendering. Real-time rendering is achieved by using

appropriate software and hardware resources so that the motion of the joint

appears to be happening at the same time that the control producing this motion

occurs. Realistic rendering is realized by specifying precisely the material

properties of the components and the lighting conditions, and by using quality

rendering hardware and software.

11..33 SSuuppeerr iimmppoossii tt iioonn ooff tthhee vvii rr ttuuaall mmooddeell oonn aa rreeaall jjooiinntt

Once the model has been assessed on a monitor, the next step in building the

VRDA tool is to superimpose the joint on its real counterpart. By integrating

synthetic imagery to a real scene, one augments the real world with useful

 12

information. Thus, this technology is called Augmented Reality (AR). Augmented

reality has two approaches to superimpose models: optical or video. The optical

approach, that we will use, has the advantage eliminates proprioceptor conflicts

involved when using a video approach.

To correlate the attitude and location of the synthetic model of the joint with its

real counterpart, the attitude and location of the subject joint must be tracked.

The rendering software then uses the tracking information to display the model

correctly to the user�s eyes. By accomplishing this task, the system gives the

user the subjective impression that the synthetic model is a three-dimensional

virtual object inside the subject�s joint.

The precise superimposition of a synthetic object on its real counterpart, known

as registration, is still a challenging problem inherent in the tracking hardware

(Rolland, 1999) used as well as the calibration of the whole system. Because no

ideal technology has been found yet, the tracking hardware has often limited

static and dynamic precision, and a limited range of measurement. The multiple

technologies found in an Augmented Reality system makes calibration a difficult

problem that is still not completely solved today. Moreover, because the

variability between humans can be noticeable, the need for user-specific

calibrations further adds to the complexity of the problem.

 13

22 CCUURRRREENNTT MMOODDEELLIINNGG AAPPPPRROOAACCHHEESS

The knee joint is one of the most complex anatomical joints of the human body

as far as the motions involved between the components are concerned.

Therefore, for this first implementation of the VRDA tool, we chose to make the

tool work on this specific joint. More specifically, this research focuses on the

bones of the tibiofemoral joint.

In the next section, a comprehensive description of the knee joint components

and motions is given. Then, a review of the modeling methods used in the

Figure 2: The human knee joint and its components (no patella).

Screw
home

Flexion

Varus/valgus

 14

biomedical field to model knee joint motion is given. Finally, some software

packages used in modeling are identified and their suitability to solve the

modeling problem is analyzed.

22..11 TThhee hhuummaann kknneeee jjooiinntt

To understand why modeling knee joint motions is challenging, one must first

understand how the human knee joint works. This section describes the knee

joint components, their functionality, and their mobility.

An illustration of the tibiofemoral joint is shown in a frontal view on Figure 2, with

the name of the components and the motions involved. The joint is composed of

bones, muscles, tendons, menisci, and ligaments. The bones are the rigid

structure of the link and are activated by the muscles attached to them by the

tendons. The menisci are lubricating the contact of the link, while the ligaments

are ensuring its cohesion.

The bones are the tibia and the femur. The patella is not considered in this first

study. The fibula motion does not play a predominant role in the motion of the

joint, so it is not considered in this study either for the modeling part. The femur

has two sphere-like contact surfaces called the condyles. The medial condyle is

closer to the center of the body and is larger than the lateral condyle. The tibia

has two corresponding spherical surfaces receiving the femur condyles, which

are called the tibial plateaus.

The menisci are divided into the lateral and the medial meniscus. The meniscus

is a sponge-like body, however its deformation is not perceptible to the human

 15

eye (Frankel, 97). The menisci are lubricating the contact between the bone

surfaces. Moreover, they take some of the load of the body acting at the contact

surfaces by increasing the contact surface and distributing the pressure. During

the motion of the joint, the menisci slide on the tibial plateaus and wrap around

the condyles to naturally fill the eventual gap between the bones surfaces

(Thompson, 89; Minami, 91; Bylski-Austrow, 94).

The ligaments are spring-like strings that connect the tibia and the femur at

specific points. Their interactions with the shape of the contact surface drive the

motion of the bones as the joint is moved (Huiskes, 90). Some of the ligaments

are the lateral, medial, and anterior and posterior cruciate ligaments. The

ligaments are not modeled in this study because they do not enter in our general

modeling scheme. Further studies will attempt to consider them.

The muscles creates the motion of the joint along two degrees of freedom known

as the flexion/extension and the varus/valgus, as illustrated on Figure 2 (Nordin,

80). These degrees of freedom condition the relative orientation of the bones

along two perpendicular axes. The ligaments and the contact surfaces create

constraints limiting and producing the relative positions of the bones, and their

orientation along the long axis of the tibia. The varus/valgus has a limited range

of motion due to the constraints imposed by the ligaments and the contacting

surfaces.

While one may think that the knee joint is a simple cylindrical liaison as the knee

is flexed, the instant center of rotation of the tibia with respect to the femur is not

 16

fixed in space. If the joint is considered planar and viewed along the sagital plan

as shown on Figure 3, the instant center of rotation of

the bones is actually describing a well known C-

shaped curve (Soudan, 79; Nordin, 80). The center of

rotation is not fixed because the shape of the

condyles along the sagital plan is elliptical rather than

circular.

Furthermore, a three-dimensional view of the joint

shows the instant axis of rotation of the bones,

illustrated in Figure 4. The path described is far more complex than the one that

would be obtained in the case of a cylindrical liaison when the joint is flexed. The

ligaments are attached at fixed points on the bones and, together with the

contact surfaces shapes, form a sophisticated constrained kinematic system

whose motion is complex.

The condyles of the femur do not only slide on the

menisci and the tibial plateaus as the knee is

flexed, but they also roll. Consequently, the contact

points of the condyles on the tibia and the menisci

are not fixed and the instant axis of rotation moves.

Additionally, because the femur is asymmetric

since one of the condyles is larger than the other,

a rotation of the tibia along its main axis known as

Figure 3: The C-curve
described by the instant
center of rotation as the
knee is flexed (Nordin, 80)

Figure 4: The 3D axis of
rotation of the tibia with respect
to the femur as the knee is
flexed (Blankevoort, 88)

 17

screw-home is produced as the knee is flexed (Shiavi, 87; Blankevoort, 90;

Conlay; 94). The tibia performs an external rotation due to the longer

circumference of the medial condyle. The opposite rotation, internal this time,

produced when the knee is extended produces a locking process of the joint

ensuring the stability of the joint.

22..22 MMooddeell iinngg mmeetthhooddss

In this section, a review of the modeling methods used to model the motion of a

knee joint is done. We distinguish two main categories of methods: the methods

using some approximation of the knee joint motions to yield simpler models, and

the methods considering the exact motion of the joint produced by the dynamic

interaction of the components. Each category will be now described.

As stated earlier, the modeling of the motion of the joint consists of specifying the

position and orientation of the bones as the joint is manipulated along the

degrees of freedom. In the case of the knee joint for example, the position and

orientation of the tibia with respect to the femur have to be known as the joint is

flexed so that the motion appears to be realistic.

The modeling of the motion of the knee joint using a more or less automatic

technique has been a large area of research in the biomedical field but not in the

virtual reality field. We found that the problems the researchers wanted to solve

are different from ours. We shall review the modeling techniques employed to

discuss the reasons why they are not adapted to our needs.

 18

22..22..11 MMeetthhooddss uussiinngg aapppprrooxxiimmaatt iioonn

A simple way to do motion modeling is to manually specify the position and

orientation of the components for any attitude of the joint in the range of motion

considered. In the case of the knee for example, one can perform this task for

any flexion and varus/valgus angle, so that the bones are in contact realistically.

First, this task is tedious since the number of attitudes considered could be

important. Second, the change of model used for the bones requires specifying a

new motion model and this task can take days or months. Third, the complex

shape of the contacting surfaces prevents having a clear view of the contacting

surfaces, so it is difficult to verify visually that the modeling is correct. By correct

we mean that the motion is smooth and geometrically convincing.

Numerous researchers are using motion curves that represent the trajectory of

the components as the range motions on the degrees of freedom are spanned.

These curves can be extracted from the literature on previous measurements or

can be measured on a subject (Ounpuu, 91). First, measurement techniques are

typically not precise because non-invasive measurement is currently not precise

and invasive measurements cannot be done on living subject onto whom the

VRDA tool is used. Second, invasive measurements on a cadaver are still

complicated because access to the bones can only be granted by the removal of

components conditioning the motion of the bones. Third, in any case, the motion

measured on a joint has to be adapted to the same geometrical model of the

joint, which cannot be done at this time because non-invasive measurements are

not precise. Fourth, the change of model using this method would require

 19

developing some methods to change the motion curve accordingly. Fifth,

measurements found in the literature are usually not accompanied with the

geometrical model of the components and the frame of reference necessary to

produce the same motion.

Some models are two-dimensional, thus the motion of the components as the

knee is flexed is assumed to be planar (Yamaguchi, 89). The technique

employed is usually to make a mathematical description of the contour of the

tibia and of the femur to find the location of one bone relative to the other as the

knee is flexed. A simple way to describe the femur mathematically is to use an

ellipse or a spiral to approximate the contour of the condyles (Rehder, 83;

Kurosawa, 85; Loch, 92), while the tibial plateaus are fitted to a plan (Delp, 90).

Then, because the location of the contact points of the condyles on the tibia is

referenced in the literature (Nisell, 85), the motion of one bone with respect to the

other can be easily deduced. This type of model assumes that both condyles

have the same section, which is not correct, and cannot realistically be employed

for a three-dimensional model. Further, some three-dimensional mathematical

models have been defined but because a mathematical model is elaborated for a

specific joint, the method cannot be extrapolated to any joint (Wismans, 80;

Kuiper, 88).

The method that is the closest to our approach uses correction of the motion

parameters extracted from experimental data by constraining the femur condyles

in exact contact with the tibia. The algorithm uses the distance between control

points of B-splines approximating the femur condyles and the tibia (Walker, 88;

 20

Ateshian, 93). This model uses the geometry of the joint and thus can be

adapted to any joint. However, it considers only two contacts, which is not

realistic. Another problem is that it cannot model the screw-home motion.

22..22..22 UUssee ooff ccoonnssttrraaiinneedd rr iiggiidd bbooddyy ddyynnaammiiccss

Most of the current knee models are typically three-dimensional dynamic models

(Wismans, 80; Blankevoort, 88; Blankevoort, 91; Garg, 90; Huiskes, 90). These

models are dynamic because the research attempts to determine parameters

related to forces or loads. One goal of these models may be be to estimate

parameters that cannot be determined in vivo. For example, the reference strain

of a ligament has been determined using this method (Van Eijden, 86).

The locations of the components are determined using Newton�s laws combined

with kinematic constraints known as rigid body dynamics. The first problem with

such models is that the implementation of dynamics on a computer is known to

be computationally intensive. Further, its stability and correctness is greatly

dependent of the initial conditions and the step size employed in the numerical

computation. The details of Rigid Body Dynamics are given in Appendix A.

Kinematic constraints are usually determined from literature measurements. For

example, the contact point location or the orientation of some components can

be used to reduce the degree of complexity of the model. However, generally,

these models are only adapted to the joint used and they cannot be used for

geometric models of any shape and size (Seedhom, 72, Huiskes, 85).

 21

To our knowledge, there exists no model of this type that has been successfully

applied to the knee joint for the complete range of motion of the flexion (Hefzy,

96). In addition, none of the models developed is modeling the screw-home

motion.

22..33 OOff ff --tthhee--sshheell ff ssooff ttwwaarree ppaacckkaaggeess

We reviewed modeling software that could have helped us create a motion

model. This allowed us to determine their suitability to solve our modeling

problem. Such packages need to have a collision detection capability to detect

intersections the user cannot see because of the complexity of the contacting

surfaces. Collision detection algorithms use the geometric specification of the

model to detect the intersection of graphics primitives. Additionally, these

packages should have a motion curve viewer to compare the created motion

curves with the ones found in the literature.

We first investigated the biomedical software SIMM available from

Musculographics Inc (Delp, 95). This software was chosen because it has been

developed specifically for biomedical modeling of anatomical joints. It provides a

graphical interface divided in modules: the viewer and the curve editor are two of

them. Given a joint, the user specifies the motion curves of the bones using the

curve editor. The viewer is showing polygonal models of the bones animated by

the motion curves specified in the modeler. The mouse can be used to change

viewpoint.

 22

A configuration file for each component of the joint is used to specify the motions

range and the values of some parameters of the components of the joint. For

example, these files can be used to describe the muscles and the ligaments

attached to the bones in order to compute forces and torques produced at any

point of a bone subject to a muscular activity.

Despite the qualities of this software, we decided to not use it because it was not

adapted to our need. The viewer is not designed for interactive modeling

necessary to specify the motion of bones of arbitrary size and shape rather than

using the curve editor. Moreover, no collision detection capability is integrated to

help the user in the modeling task.

3D Studio from Kinetix and Power Animator from Alias/Wavefront are famous

animation packages working respectively on PC and on SGI. They are the most

used software for the synthetic animation industry and include advanced features

allowing complex rendering. However, they do not support collision detection

according to the respective technical support consulted at this occasion. While

the modularity of the packages provide an advantageous way to import plugins

that add new capability and that can be created by anybody, we did not try this

solution to create a modeling method.

Other packages such as Multigen and AutoCAD as well as other packages found

on the web, were all rejected from our review. Some did not have the required

capabilities, others required too much time to learn and extend. Others were not

 23

available for evaluation. This review brings us to the design of a new application

handling our specific problem, that is the main contribution to this research.

 24

33 AA NNOOVVEELL AALLGGOORRIITTHHMM FFOORR MMOODDEELLIINNGG
AANNAATTOOMMIICCAALL JJOOIINNTTSS MMOOTTIIOONNSS

None of the modeling approaches identified in chapter 2 has been found useful

to produce a motion model appropriate for the VRDA tool. We thus designed a

novel automatic modeling method to model the motion of anatomical joints.

The method relies on the use of an original algorithm to find the stable position

and orientation of two rigid bodies in contact. We shall first describe our

approach to modeling the motion of anatomical joints and then describe the novel

algorithm features in detail.

33..11 OOvveerraall ll aapppprrooaacchh

The method consists in first dividing the range of motion into motion steps. In the

case of the knee for example, the varus/valgus and flexion/extension motions will

be divided into small angle slices of one degree. Each attitude of the joint,

characterized by a varus/valgus angle and a flexion angle will then be a motion

step. At each motion step, the stable position and orientation of the bones of the

joint will be searched, considering that the bones are pushed along a direction

that we shall call ∆. Once a stable position and orientation is found for a motion

step, the position and orientation of the bones will be recorded in a lookup table

indexed by the entry angles. This lookup table will then be used during the

simulation.

 25

To perform the search at each motion step, an original incremental algorithm

detailed in sections 3.2 to 3.7 is used. The algorithm works on two rigid bodies,

which means that the geometrical models do not change in shape and size

during the process. One is fixed and is called the reference, the other is moving

and is called the moving object.

During the use of the VRDA tool, the joint of a model patient is under no load

since it is manipulated by a user. The muscles activity as well as the weight of

the subject do not play a predominant role in the attitude of the joint. However,

the ligaments and the surfaces are still constraining the motion of the

components of the joint in a stable position as the knee is flexed. Therefore, it is

valid to consider that the ligaments and the contact surfaces produce some

kinematic constraints on the joint motion, which is the base of the modeling

algorithm proposed.

33..22 SSttaabbii ll ii ttyy sseeaarrcchh ppaarraaddiiggmm

The joint motion we want to simulate in the VRDA tool does not require dynamics

because no load is considered. However, the reaction forces that are considered

in a dynamic approach seem to be appropriate to find the stable attitude of the

components. Specifically, our algorithm uses the normals at the contact points

that are in the same direction as the reaction forces used in Dynamics. However,

the novelty of our algorithm is that it only considers the direction of the reaction

forces and nothing else. Consequently, the result of the algorithm is not

 26

dependent upon the initial conditions of position, speed, and of the reaction force

amplitudes.

Therefore, the algorithm will always find the local minimum corresponding to the

chosen initial position. When applying the algorithm to anatomical joints, the

shape of the contacting surfaces and the initial position of the bones before

searching the stable position are thus taken in consideration.

Figure 5 shows a flow chart of the working principle of the algorithm. A typical

modeling step consists in detecting the collision of the rigid bodies, removing the

rigid bodies out of collision to establish exact contact. The contact points and the

normals at these contact points are determined. By combining the normals, the

algorithm determines the next motion, which can be a rotation, a translation, or

the stability of the moving solid. The algorithm moves the solid along ∆ when

there is no collision. Therefore, upon collision, the translation occurs in a plan

perpendicular to ∆ and the rotation is produced around ∆.

 27

Collision
occured?

Translate the
moving object

along delta
No

Establish exact
contact of the

objects

Yes

Determine
intersecting
primitives

Remove back-
facing normals

Determination of
barycenter of

application points
candidates as

center of rotation

Computed
center can be

center?

Turn the moving
objectaround the
computed center

Project normals on
plan perpendicular

to Delta and
normalize

Resultant
determination by

average by
components and

sign

Resultant null?

Moving object is
stable

Translate the
moving object

NoNo

Yes

Determine contact
points and normals

Yes

No

Barycenter
can be center?

Yes

Figure 5: flow chart illustrating the working principle of the algorithm to
search a stable relative position and orientation of two rigid bodies.

 28

33..33 DDeetteerrmmiinnaatt iioonn ooff tthhee ccoonnttaacctt ppooiinnttss aanndd nnoorrmmaallss

We use exact collision detection to determine the graphical primitives (e.g.

polygons) of the geometrical models or objects that are intersecting according to

the current attitude of the objects.

Collision detection is a subject that has been largely studied and there exist

several algorithms adapted to different types of graphical objects such as

polygon-based, NURBS-based, rigid, or deformable models. The algorithm we

have developed for modeling can employ any of the existing collision algorithms

depending upon the type of graphical model considered.

Once the intersections of the objects have been detected by collision detection,

exact contact is established between the objects in order to determine the

contact points. This task is done by performing a dichotomy on the last motion

step and detecting at each step whether or not there is collision.

Because the algorithm produces a translation or a rotation of the moving solid at

each motion step, the dichotomy can be done on one of these two motions as

well. The dichotomy stops when the step size of the dichotomy is below the user-

specified modeling resolution for the translation or the rotation according to the

last motion executed before collision..

The colliding primitives at the last step of the dichotomy are memorized to

determine the contact points of the objects. The colliding primitives are given as

a list of pairs of primitives, with the primitive on the reference solid first and the

primitive on the moving solid next.

 29

If the models are described as polygons, the exact contact points can be

determined in theory by intersecting the lines going through the sides of one of

the intersecting polygons with the surface of the other, and vice versa. If the

intersection is a point, the contact is a point. If the intersection is a line, then the

contact is a line. If the intersection is at least two lines, then the contact is a

surface, and its extent is determined by computing the intersections of the other

lines of the polygons on both objects. Then, a contact point should be considered

at each vertex of the intersection surface.

Because the dichotomy search has a limited resolution, the contact is not exact

and neither is the intersection. One must use a method that is not sensitive to

approximate contact. Currently, our algorithm uses the center of the triangle

primitives as the contact points. This approximation is valid if the triangles are

small enough so that their centers are roughly at the same location than the

contact points.

 The algorithm uses the contact point as the application point of the normal to the

surface at a specific contact point. The normal is determined by interpolation of

the normals at each vertex of the polygon. The normals at each vertex are given

in the geometrical model.

The normal obtained is oriented and placed as the reaction force that would be

produced in the real world. Because our algorithm currently uses the center of

the triangles as the application point, we average the normal at the three vertices

of the triangle to obtain the normal at the center.

 30

Each intersection of two primitives produces two normals, one on the reference

object and one on the moving object. However, only one of them must be

considered for each contact point. The choice of taking a contact point on the

reference object or on the moving object requires the comprehension of the

working principle of the algorithm, so it will be detailed further in section 3.7. A

normal orientation is only function of the orientation of the object to which it is

attached. However, an application point location is function of both the position

and the orientation of the object to which it is attached.

The last step of the procedure is to ignore the normals that are directed in the

half plan oriented by the direction of ∆. This can happen when during the last

step of the collision a primitive at the back of the reference model is intersected.

Because these reaction forces will not be produced in the real world, and

because they would contribute to push the solid against each other instead of

pushing them apart, they are removed from the list. These normals are detected

by computing the dot product of the normals with the vector ∆ and verifying that it

is not negative.

33..44 RRoottaatt iioonn pprreeddiicctt iioonn

A torque around a center B can be generated if all the reaction forces directed by

the normals produce momenta of same sign around the center. If the signs of the

momenta for different normals change, the moving object will not turn because in

the real world, the reaction forces would balance each others to produce a null

torque.

 31

To compute the momentum produced by a

normal around a center, one must compute

the cross product of the normal with a vector

going from the considered center to the

application point of the normal. The algorithm

only verifies that the signs of the momenta

are the same among all the normals. If it is

the case, the axis of rotation is chosen to be parallel to ∆ as stated earlier and

the axis passes through the considered center B (see Figure 6).

The procedure to determine is the moving solid turns is the following. First, the

algorithm tries to take the isobarycenter of all the application points as the center

of rotation. If all the normals at the

considered contact points produce some

momenta of same sign, then the rotation of

the solid is performed around the axis

parallel to ∆ and passing by the

isobarycenter. This case is depicted in

Figure 6.

If the barycenter cannot be the center of

rotation, then each of the application points

is taken as a possible center of rotation. The computation of the momentum

produced by the normals at the remaining application points is computed to

B

≅≅≅≅

Figure 6: Illustration of a case where
the isobarycenter of the application
points can be a center of rotation

≅≅≅≅

B C

F1

F2

F3

Figure 7: Illustration of the case
where the isobarycenter cannot be
center of rotation and each application
point is evaluated as a possible center
of rotation. In this case, only the
application points of the normal F1 and
F2 can be centers.

 32

determine its suitability as a center of rotation. Then, the isobarycenter of the

application points that are suitable to be center of rotation is taken as the center

of rotation. This case is illustrated Figure 7. As a security step, the algorithm

verifies if the computed center is valid using the momentum produced by the

normals around this point. In all the tests of the algorithms, we found that the

center selected was valid.

In both cases, the amount of rotation is set by the user-specified rotation-

modeling step. The direction of rotation is set by the sign of the momenta as in

the real world. When a rotation is produced, the algorithm then iterates to the

next modeling step defined in section 3.2. The algorithm verifies if a rotation of

the solid is possible in a quadratic time of the number of contact points.

33..55 TTrraannssllaatt iioonn pprreeddiicctt iioonn

If none of the rotation tests is satisfied, the algorithm attempts to translate the

moving solid along the plan perpendicular to ∆. In order to determine the

resulting motion that should be performed to translate the solid toward its stable

position, we reviewed several potential solutions solutions.

Each solution consisted in sources vectors extrapolated from the normals and

combined using an operation whose result determined the next motion step.

Some types of source vectors could have been the normals themselves, the

projections of the normals on the plan perpendicular to ∆, the unit vectors

directed by the normals, or others. Some types of operation could have been the

vector sum or the averaging of the vectors.

 33

The implementation of all the types of source vectors and operations in our

modeling software allowed us to verify the applicability and detect the problems

of each combination source vector/operation. This explorative study allowed us

to establish that the combination of motion vectors using the average by

component is the method leading to the most natural motion of the moving

object.

We define the motion vector

corresponding to a normal as the

unit vector directed by the projection

of the normal on the plan

perpendicular to ∆ (⊥∆). The unit

normalization makes the influence of

each normal independent of the

slope of the contact surfaces

because motion of the moving solid

toward its stable position and

orientation should not be influenced by the slope of the contact surfaces.

We then use the average by component method to combine the various motion

vectors. The average by component method considers four orthogonal directions

on the plan perpendicular to ∆. For example, if this plan is defined by the X and

Y-axes, the four directions could be +X, -X, +Y, and �Y. All the motion vectors

are projected along these four directions when applicable. Then, the projections

≅

⊥≅

⊥≅

(a) (b)

(c)

Figure 8: Illustration of the use of the normal to
determine the next motion to perform towards
the optimal position. (a), (b), (c) represent the
sequence of locations that the circle performs.
The horizontal arrows are the normalized
projection of the normals at the contact points
on the plane perpendicular to ∆. In (c) the sum
of these vectors is null and the circle is stable.

 34

are averaged along each direction to produce four new vectors. Finally, these

vectors are added together to produce a resultant vector that sets the direction of

motion of the moving object.

Such a combination of the vectors has the particularity to remove the duplicate

vectors of same direction and compute the resulting vector in a linear time of the

number of application points. The resulting vector is guaranteed to be within a

square of side dimension equal to two on the plane perpendicular to ∆. The

algorithm multiplies this vector by the modeling step size to obtain the translation

that the moving rigid body must perform.

The moving solid is stable when the amplitude of the translation predicted is

below the translation-resolution step. The resulting reaction force is in this case

almost directly opposite to the direction of motion ∆ and thus the moving object

should be stable. When a translation is produced, the algorithm iterates to the

next modeling step.

Figure 8 illustrates the use of the method in the two dimensional case with a

circle falling between two lines. Figure 9 shows how the vectors are combined in

the plane perpendicular to ∆ to obtain the resultant vector when considering the

three dimensional case.

When a planar surface on one of the object is divided in several graphical

primitives, several normals oriented in the same direction may be detected. It can

be noted that the computed resultant is not the exact motion to perform, but it is a

 35

better approximation than using the vector sum because it removes the duplicate

vectors of same direction, as illustrated in Figure 9.

This heuristic approach may generate an invalid motion that can be produced

when the computed motion of a moving object is making it move into a surface

with which it was in contact.. The correct motion is obtained by applying the cycle

detection capability now detailed.

33..66 DDeetteecctt iioonn ooff ccyyccllee

The procedure of detection of cycle verifies after each step of the stability

algorithm defined in section 3.2 if the current relative attitude of the objects is

similar to a previous one at the precision of the modeling resolutions. The attitude

of an object is similar to a previous one if the difference in angle is less than the

≅

(b)

+Z

-X

-Z

+X

(c)

(a)

Figure 9: (a) A moving object M viewed along the direction ∆ is submitted to multiple forces
(Fx) that do not produce a torque. (b) The vector sum leads to a resultant vector (V) that is
too large due to the duplicate vectors F3 and F4. (c) The average by component method
allows the removal of duplicate vectors of same direction.

M
F1

F3

F2

F4
F1

F1

F2

F2

F3

F3

F4

F4

V

V

 36

angular resolution and the difference in position are less than the translation

resolution.

If any such condition occurs, a cycle is detected and the modeling step size

corresponding to the last motion, which is either a translation or a rotation, is

divided in half. The modeling step size of the translation is reset to its original

value when a torque is produced. The modeling step of the rotation is reset to its

original value when a translation is produced.

The detection of cycle first forces the convergence of the algorithm given a

translation step size and an initial position. In effect, imagine a circle between two

inclined surfaces forming a sink as illustrated in Figure 8. The circle ends up

exactly at the bottom of the sink only for some discrete initial positions and step

sizes, else it will indefinitely oscillate at the bottom of the sink between the two

surfaces. With the detection of oscillation, the translation step size will be

reduced in half at each oscillation to finally reach a value inferior to the

translation resolution, where the moving solid will be considered stable.

Similarly, the cycle detection also fixes the problem occurring when the algorithm

does not produce a torque when one should be produced. Imagine a bar falling

between two pyramidal surfaces as illustrated in Figure 8. Because of the initial

position and modeling step size, the bar can oscillate in rotation this time

between two surfaces. Therefore, the algorithm does not detect the production of

a torque because there is no detection of a center of rotation if there is only one

 37

application point. By using the oscillation detection, we can make the bar finally

touch the two surfaces and produce a torque.

The final contribution of the detection of cycle during the translation is to

compensate for the non-zero resultant motion obtained using the average by

component method. In this case, an invalid motion due to forces that are directly

or quasi opposites can be produced: the moving object goes in collision with a

surface of the reference object that it already touches. Because of the detection

of cycle, the collision with the surface will make the moving object retry the same

motion with a translation step size divided in half at each step of the algorithm.

Finally, the translation step size will be under the translation resolution and the

object will be correctly considered stable.

33..77 CCuurrvvaattuurree aanndd ccoonnttaacctt ppooiinnttss iissssuueess

We pointed out earlier that each of the normals and application points must be

taken either on the reference object or on the moving object. This section

explains how the choice must be done. Imagine a pyramidal cap oriented along

the axis ∆ and pushed along ∆ in a pyramidal sink as illustrated Figure 10. The

top frame shows a top and 3D views of the objects. On the bottom, two

schematic views are shown with the normals at different considered contact

points. The white vectors are the normals extracted from the sink while the gray

vectors are the normals extracted from the cap. The cap has to turn around ∆

due to a torque and to translate along ∆ to find a natural stable position.

 38

Now, suppose that the normals

are taken at the triangles centers

and each face of the object is

made of exactly one triangle. This

case is illustrated in the bottom

left frame in Figure 10. In this

case, we note that no torque can

be produced since all the normals

are going through the center.

Because the edges of the cap

that touch the surfaces of the sink

are sharp and discontinuous, two

surfaces would be detected to be

in collision on the cap at each

contact point.

By applying the normals at the exact contact points rather than at the triangles�

centers, as illustrated in the bottom right frame in Figure 10, a torque can be

detected if the normals are taken on the pyramidal sink. In effect, we can note

that because the surfaces of the cap are discontinuous, i.e. sharp, at the contact

points, the two surfaces are in collision and two opposite torques are produced at

each point. In the real world, because the surfaces are always continuous only

one reaction force corresponding to the normal we used at each contact point

would be produced exactly opposite to the one on the sink. However, such a

Figure 10: The problem of the pyramidal cap and
sink. The top frame represents a top view and a 3D
view of the objects. The bottom frames are
schematic views with the normals extracted from the
cap (white) and from the sink (gray). The left frame
considers the normals at the center of the triangles,
while the right frame consider the exact contact
point.

 39

normal cannot be computed using polygonal models, therefore we should not

take the normals on the object having a sharp contact point.

These observations showed that the algorithm must apply the normals at the

exact contact points. Furthermore, at each of these contact points the algorithm

must take the normals to the surface of least curvature if the models are

described using discontinuous surfaces such as polygons. The problem of finding

which surface has the less curvature can be solved using a connectivity graph

that contains an edge between every pair of surfaces that share a common side.

By computing the dot product of the normal at the contact surface with the

normals of the adjacent surfaces, one can estimate a value proportional to the

curvature of the object.

If the models are described using continuous geometry such as patches for

example, choosing the curvature is not a problem since on each object the

normals will be the same and will be unique for a given contact point. In the

discontinuous case, if the normals are taken on the object with the least

curvature at each contact point, the algorithm will then be able to determine the

correct motion in the general case.

33..88 CCoonnttrr iibbuutt iioonnss ooff tthhee aallggoorr ii tthhmm

The described algorithm searches the stable relative position and orientation

around ∆ of two rigid objects when pushing them against each other along a

defined axis ∆ (Baillot, 99). The algorithm produces a stair-like motion when the

 40

solid is moving toward its stability because the translation along ∆ and

perpendicularly to ∆ are treated separately.

The complexity of the algorithm proposed is largely reduced compared to a

method using the Rigid Body Dynamics because it does not involve integration.

Additionally, it does not use force, speed, and acceleration amplitudes, thus it is

robust given it is quasi independent of the initial conditions. A large range of

modeling step sizes and initial relative positions and orientations of the object

make the algorithm converge to the same result. In fact, we postulate that if the

initial position of the moving object is such that in reality the two objects would

find a stable position, our algorithm could be shown to converge as well.

In addition, because the design of the algorithm is based on the real geometry of

the object, the algorithm can be employed on any model size and shape. This

algorithm could be employed for animation purpose by removing the showing of

the step where the objects are not in contact, thus replacing the stair-like motion

by a smooth motion.

In the case of the modeling of an anatomical joint, when the algorithm finds a

stable position, a motion step is then completed. The position and orientation of

the objects are recorded in a lookup table indexed by the entry angles spanning

the degrees of freedom. Then, the modeling algorithm iterates to the next motion

step by changing the attitude of the reference object using the entry angles of the

joint. Finally, the algorithm is applied on the new motion step and when all the

motion steps have been considered, the modeling is completed.

 41

44 IIMMPPLLEEMMEENNTTAATTIIOONN AANNDD VVAALLIIDDAATTIIOONN OOFF TTHHEE
AALLGGOORRIITTHHMM

In this chapter, we describe the implementation of the proposed algorithm

detailed in Chapter 3, as well as the validation of its behavior on test objects.

44..11 AAllggoorr ii tthhmm iimmpplleemmeennttaatt iioonn

A SGI Onyx VTX workstation equipped with two 150 MHz processors was used

for the implementation of the algorithm. The application executes both the

graphical and the modeling processes in parallel. The graphical process displays

the geometrical models whose position and orientation are computed by the

modeling process. The modeling process initializes the application by loading the

geometrical models, reading the modeling parameters, and creating the graphical

process.

First, the modeling process loads the geometric models. The objects� geometry is

specified using a file format referred to as Vertices-Faces (VF) and is given the

extension �obj�. The VF format is divided into three parts. The first part describes

the number of vertices and faces that compose the polygonal model. Secondly,

the three dimensional coordinates of the models� vertices are listed sequentially

in order corresponding to their index numbers. Finally, each polygonal face is

enumerated by specifying the number of vertices followed by the listing of the

index numbers. Examples can be found on the provided floppy disk in the

directory modeler/models.

 42

At the time the models are loaded, the polygons are divided into triangles using a

recursive algorithm. Each recursion utilizes the first three vertices of the polygon

to construct a triangle, which is removed to form a new polygon. When the

polygon is completely divided, the algorithm is terminated. This algorithm is not

optimal because it does not attempt to achieve the homogeneous subdivision of

each polygon. A homogeneous subdivision would theoretically divide the model

into fewer triangles and therefore increase the modeling and rendering speeds.

The second phase of the initialization consists of reading a configuration file

specified in the command line calling the application. The configuration file allows

the user to change the controlling parameters of the application instead of hard-

coding them, thus avoiding frequent recompilation. The configuration file is a text

file containing a keyword in each line followed by values characterizing the

parameter designated by the keyword. The parsing is kept simple and no error

check is done. However, the application displays the interpreted parameters�

values for debugging. Examples of typical configuration files are included on the

floppy disk in the directory modeler/config. The keywords used in the

configuration files are detailed in Appendix B.

The initialization of the application finishes with the creation of the graphical

process. The modeling and graphical processes are self-assigned to the first and

second processor, respectively. Both of these processes communicate through a

shared data structure that stores common parameters such as the three-

dimensional geometry of the objects.

 43

The graphical process renders the geometrical models in their current attitude

during the modeling. The source code consists of a conventional rendering loop

written in OpenGL executing the display lists created in the initialization phase.

Some functions displaying the axis of the models as well as the normals�

direction have been implemented for debugging.

The modeling process runs the algorithm described in chapter 3. To perform the

detection of collision between objects, the collision detection library RAPID,

designed at the University of North Carolina at Chapel Hill (UNC-CH) was used.

RAPID is a freely available package written in C that determines efficiently the

triangles of two rigid bodies that are intersecting (Ponamgi, 95; Gottschalk, 96).

This library is adapted to the graphical models we use since it works on rigid

models specified as triangles. The library has two calling functions. One asks for

the position and orientation of the models and return the triangles that are

intersecting in both models if there is intersection. Another quicker function can

be used to only determine whether the models are intersecting.

The modeling process currently considers the ∆-axis is along the Y-axis.

Therefore, the projection of a normal on the plan perpendicular to ∆ to form the

motion vector, can be performed by simply taking the X and Z coordinates. The

dichotomy used to determine exact contact is simplified for the same reason.

Using the described implementation, the modeling algorithm uses the geometry

of the contacting surfaces to determine the stable position along the X and Z axis

of the moving object and its orientation around the Y-axis. For more details, the

 44

source code of the application can be found in the directory modeler on the

provided disk.

44..22 AAllggoorr ii tthhmm vvaall iiddaatt iioonn

In order to validate the translation and orientation component of the algorithm, we

used several test objects to verify the algorithm behavior. The Y-axis, vertical in

OpenGL, is taken as the ∆-axis to suggest the gravity force exerted on the

moving object. The verification of the correctness of the algorithm was done by

verifying if the moving object was naturally �falling� in the fixed reference object.

Because the results of pushing an object down or up toward another should

produce the same result, we tried for each test to invert the reference and the

moving objects to verify the invariance of the algorithm

In the following, we first show the results of the translation because this feature

was less complex to verify than the rotation. In effect, for the rotation to be

produced, the object has first to translate along ∆, so the verification of this

feature requires that the translation has been verified first.

44..22..11 TTeesstt ooff tthhee ttrraannssllaatt iioonn ffeeaattuurree

To test the translation feature, we used objects that guaranteed no possible

torque and we verified that the algorithm indeed did not detect any torque. We

tested that a sphere was correctly directed at the center of a dish-like object

when it is dropped anywhere above the dish. The choice of these objects is

because a condyle resembles a sphere and a tibial plateau resembles a dish.

 45

Three frames taken during the modeling of a ball falling in a dish can be seen in

Figure 11.

We varied the initial position of the sphere so that the vertical axis of the sphere

was anywhere above the dish. We varied the relative size of the sphere with

respect to the dish between two extreme values. The largest was such that the

two objects had the same size and the smallest was such that the sphere was

smaller than a triangle of the dish. We varied the relative diameters of the sphere

along the three axes to analyze the effect of non-proportional scaling. We last

varied the modeling step size up to value reaching the order of magnitude of the

size of the objects.

We also used several types of dish object sections including a section where the

sphere had to go along a non-monotone slope to reach its final position. We

tested the peg-in-a-hole problem by leaving a hole at the bottom of the dish and

verifying that the moving object was going through this hole when it reached the

bottom of the dish.

Figure 11: The example of the modeling of a ball falling in a dish. Here three frames can be
seen during the modeling with a 3D view and a side view of the objects on each frame. It can
be seen that the ball converges correctly toward the center of the dish.

 46

For all the variation of position, size, scaling, and proportion, the sphere was

converging at the center of the dish as long as its vertical axis was initially placed

above the dish-like object. We noted that by keeping the translation resolution at

least ten times smaller that the translation-modeling step as a secure ratio

ensured avoiding the algorithm to converge in locations where it should not due

to computation errors. The final position was only slightly changed according to

the translation resolution specified by the user.

44..22..22 TTeesstt ooff tthhee rroottaatt iioonn ffeeaattuurree

The rotation feature was designed to compute the relative orientation of the

bones of the knee joint under the kinematic constraints imposed by the contact

surfaces that produce the screw-home angle in the case of the knee joint. To test

this component, we attempted to produce a torque on an object falling into

another. Toward this goal, two types of pair of objects were used: the torque and

the top configurations.

Figure 12: The example of the modeling of a bar falling between two pyramids forming a sink.
The bar must rotate as result of torque to fall on the bottom surface. This motion is correctly
observed.

 47

The torque configuration is composed of a bar falling in a sink formed of two

pyramids so that when the bar goes down, the pyramids produce a torque

making the bar rotate. Such a configuration is depicted in Figure 12.

We tested the correct convergence of the algorithm on this pair of object when

we varied the step size, the proportions, or the initial position and orientation of

the objects. For each test we performed, we verified that the center of rotation

was correctly computed by modifying the initial position of the bar along its

length. One must note that the torque produced when the center of the bar is not

centered at the center of both pyramids is not realistic because the object should

in reality fall on one side. We do not desire this behavior here because we need

to constrain the rotation around an axis parallel to ∆ for the modeling of the knee

joint.

The top configuration was composed of a four faces pyramidal sink receiving a

pyramidal cap of the same shape, as seen in Figure 13. The pyramidal cap had

to turn and translate to the bottom of the sink to be stable. We chose to report

this example because it made us discover the problem of not choosing the exact

contact point as well as the smallest curvature as described in section 3.7.

When both objects had a relative orientation around ∆, we found that the moving

object was not rotated as it was directed toward the reference object.

This problem was solved by dividing the triangular surfaces of the sink in two,

and taking the normals from the sink object. Considering these two solutions

together was sufficient for the algorithm to judge if the cap should turn clockwise

 48

or counter-clockwise. However, as we saw in section 3.7, a more general

approach will be needed to include any case. For this example of objects and

after the described modifications have been done, we used several modeling

step sizes, initial positions and orientations, as well as different relative sizes of

the objects.

For both type of objects considered to test the rotation feature, we noted that it

was secure to keep the modeling rotation step for the orientation at least ten

times larger than the rotation resolution. In effect, such a ratio was in general

wise to avoid that a stable orientation to be detected when it should not. Under

this condition, the moving solid always correctly landed in a natural stable

position and orientation.

Figure 13: The example of the modeling of a pyramidal cap going in a pyramidal sink with a
relative orientation of the objects around ∆. In this case, the correct location of the contact
point was approximated by dividing the triangles forming the sink surface in two. The cap can
be seen to converge correctly on the pyramidal sink by performing translations and rotations.

 49

55 AAPPPPLLIICCAATTIIOONN OOFF TTHHEE AALLGGOORRIITTHHMM TTOO TTHHEE KKNNEEEE

JJOOIINNTT

In this section, we first describe the assumptions we made on the motion model

of anatomical joints. Next, we present the geometrical knee model we employed.

We then explain the modification of the modeling application we conducted to

perform the modeling of the knee joint motion. Finally, we discuss our modeling

results on the geometrical model considered.

55..11 MMooddeell iinngg aassssuummpptt iioonnss

As stated earlier, there are no loads applied to the components of the knee joint

during the use of the VRDA tool. The components are essentially constrained to

stay together.

We consider that the ligaments are producing forces of infinite amplitude rather

than force of finite amplitude such as produced by spring-like forces. We can

thus consider that the ligaments are producing kinematic constraints on the

models, which is in accordance with our algorithm.

Further, we assume that the resultant of the forces produced by the ligaments

has a constant direction that we call ∆. While we consider this direction constant

during the whole motion modeling process this direction can be modified without

lost of generality of our algorithm once this direction is known in more detail.

 50

We currently consider the knee model to be composed of two rigid bodies: the

femur and the tibmen. The tibmen is composed of the tibia and the menisci. We

consider that the menisci are rigid on the whole range of motion. The fibula is not

included in the modeling because it is not in contact with the femur on the range

of motion of the knee.

This assumption allows us to produce a first motion model before quantitative

data on the exact deformation of the menisci are available. Once these data are

available, the menisci will be deformed accordingly at each motion step. During a

same motion step, they will then be considered rigid. Because the menisci are

considering rigid, they can been seen as kinematic constraints, a condition

required for the algorithm to work.

Because the menisci shape has not been modified, a gap can be created

between a condyle and the corresponding tibial plateau when the varus/valgus is

spanned. Because a gap will not be created in the real case given that the

menisci would fill it, we chose to only model the flexion/extension of the joint such

that both condyles always touch the tibia. However, we still have to perform the

modeling for any varus/valgus angle to find the instant axis of flexion for which

both condyles touch.

We divide the motion modeling into motion steps for the overall range of motions.

The step size conditions the accuracy desired between motions step during the

simulation. At each motion step, the angles putting the joint in a given attitude are

kept constant. For the knee, the degrees of freedom are the varus/valgus and

 51

flexion angles. These angles constrain the relative orientation attitude of the

femur and the tibia for a given motion step.

In the current implementation of the algorithm, we consider that the normals are

taken on the reference objects. This means that the reference object must be the

bone of the joint, which has the least curvature at each contact point.

In the case of the knee joint, the femur and the tibia have shapes that have

similar radii of curvature at the contact point so no problem can be encountered.

However, the sides of the menisci are sharp and have a curvature a lot larger

than the curvature of the condyles at the contact points. Therefore, we chose the

femur to be the reference object and the tibmen to be the moving object.

55..22 GGeenneerr iicc 33DD mmooddeell ooff tthhee kknneeee bboonneess

The geometric model we used is a

three-dimensional generic model of

the bones of the human knee joint

distributed by Viewpoint Inc. The

model was digitized from a human

male knee joint. The model comes

in different formats including

Inventor 2.0 and Object. The

complete model rendered using

Inventor is shown in Figure 14. For
Figure14: The knee joint distributed by Viewpoint
Inc. and rendered using Open Inventor.

 52

the modeling part, we chose to use the Object format, which is easier to parse

and to manipulate.

The model is a high-resolution model of the inner components of a human knee

joint in extension. The components of the model are the muscles, the bones, the

menisci, the tendons, and the ligaments. The model has a length of about twenty

centimeters along its long axis.

The model is described as polygons. The frame of reference attached to all the

components in this attitude is the same and is located roughly at the center of the

joint. The Y-axis is directed along the length of the joint. The X-axis is going from

the medial to the external part of the joint, i.e. from the left to the right of the left

joint of a subject seen from the front. The Z-axis is going horizontally from the

front to the rear of the joint. Using OpenGL and in the absence of rotations, the

joint is seen vertically and from the front.

The Object file format is a text format describing all the components of a model in

three files: the coordinate file, the normal file, and the element file. The

coordinate file contains the coordinates of the vertices of all the components of

the model. The normal file contains the surface normals for each of the vertices.

The element file contains the polygon description by specifying for each face the

element to which the face belongs, followed by the enumeration of the indices of

the vertices that compose that face.

We transformed this format into the ASCII format because the ASCII format uses

exactly one file for each component. Because each file describes one

 53

component, it is then possible to load only the components that interest us, such

as the bones for example.

Toward this goal, we developed a C converter ObjToAsc placed on the floppy

provided. This converter extracts the components of the model from the Object

file, counts their polygons, and creates an ASCII file for each component. At the

same time, a normal file is also produced for rendering purpose if such data are

found in the Object format.

Below is the listing of the output produced by the converter for the components

we need for the simulation out of the 18 composing the entire model. The

Medmen and Latmen components are the Medial and Lateral menisci,

respectively. The listing also shows the number of triangles generated using the

triangulation technique described earlier.

Components Polygons Triangles

Tibia 1484 1746

Patella 308 378

Femur 1300 1516

Medmen 570 665

Latmen 640 742

55..33 MMooddeell iinngg aappppll iiccaatt iioonn mmooddii ff iiccaatt iioonnss

The modeling application has been modified so that the graphical process

constructs display lists out of the triangles of the loaded models. Display lists are

 54

used in OpenGL to accelerate the execution of sequence of instructions whose

parameters are constant. By recording the sequence of instructions in a structure

in memory, OpenGL can execute them faster. The triangles of a rigid body have

fixed coordinates in the frame of reference of the rigid body. Therefore, the

rendering of thousands of triangles to render a model is the type of task that is a

good candidate to be recorded as a display list.

The algorithm process has been modified to execute the search for the stable

position and orientation of the moving object at each motion step. The recording

of the stable relative position and orientation of the bones was conducted in a

lookup table that will be employed for the simulation phase. The lookup table

contains the three orientations and the three translations to apply to the moving

object to recover the modeled configuration of the joint.

To avoid computing at each motion step a new valid initial position for

convergence of the stability algorithm, the last stable position is taken as the next

initial position. Moreover, at each motion step, the reference object is oriented

along the degrees of freedom. The advantage of orienting the reference instead

of the moving object is that the normals and their application points are rotated at

each motion step instead of at each modeling step.

Finally, because we only want to model the flexion of the joint the application was

able to determine and record in a file at each motion step whether or not both

condyles were touching.

 55

55..44 RReessuull ttss ooff tthhee mmooddeell iinngg ooff tthhee kknneeee jjooiinntt aanndd iimmpprroovveemmeennttss

An illustration of the modeling of the knee joint model using the application is

depicted in Figure 15. The femur is the reference object and is oriented

according the flexion and varus/valgus angles. The tibmen (i.e. tibia and menisci)

is the moving object and is manipulated by the stability algorithm.

Because of the convenient orientation of the axes of our knee model, we span

the varus/valgus angle by rotating around the Z-axis and span the flexion angle

by rotating around the X-axis. Using these axes, we guarantee that the angle of

zero varus/valgus (i.e. defined as both condyles touching) will be found for any

flexion angle.

We used some orientations in the range zero to -90° for the flexion angle and

some orientations in the range +10° to -10° for the varus/valgus. We then divided

each range in step of 1°. We generally used a modeling step ten times larger

than the associated resolution.

Figure 15: Three frames taken during the modeling of the knee joint motion. It can be noted
that the femur is rotated to produce the varus/valgus, while the tibia is pushed against it to find
a stable position

 56

The resolution of the human eye is one arc minute in the foveal vision, and the

viewing distance of the model in our application is typically 0.5 meter. The

maximum resolution in translation resolvable by the human eye at 0.5 meter is

thus about 0.145 mm. We then set 0.1 mm as the translation resolution and 1

mm as the linear modeling step.

To obtain the corresponding resolution for the rotation, we take into account that

the tibia is enclosed in a circle of about 3 cm in radius as the screw-home angle

is changed. Therefore, an arc of length 0.145-mm must be produced by an angle

of 1.45E-4 / 3E-2 rad or 0.27°. We then set the orientation resolution to 0.1°, and

the modeling rotation to 1°.

When the modeling was performed, the curve of the translation produced on the

Z-axis as a function of the flexion angle showed some jittering of the joint in some

places that were also observed during simulation. We understand that these

discontinuities are due to the use of a polygonal model discontinuous by

definition. We think that the polygons roughness prevents the motion of the tibia

during a range of flexion angles, and at a certain angle the motion is possible

because one stopping edge is favorably oriented.

Each position or orientation parameter can be extracted from the lookup table

and represented as a discrete surface in a space defined by the value of the

parameter (e.g. Z-axis) as a function of the flexion and varus/valgus angles. Such

a surface is shown in Figure 16 on the left frame.

 57

We smoothed the discontinuities of the motion surface using polynomial surface

regression to achieve a least squares fit of the surface for each parameter. By

using a polynomial of degree six to smooth the two translations and the rotation

obtained during the modeling, we achieved a smooth motion model without

perceptible collision. As an example of typical results after smoothing, the

smoothing of a surface curve is shown in Figure 16 in the right frame.

Because we chose to simulate the knee with a zero varus/valgus angle, a new

lookup table, which can be accessed by the flexion angle, was built. We designed

a converter to this effect. The converter uses the file recorded during the

modeling, which specifies for each motion step whether each condyle touches

the corresponding tibial plateau. The converter then scans all the varus/valgus

angles for a given flexion angle in the lookup table. Finally, it takes as the zero

varus/valgus angle where both condyles touch, the average between the first

and the last varus/valgus angles.

6

7

8

9

10

-4.801 10

-4.947 10-3

-5.061 10-3

-5.146 10-3

-5.203 10-3

ZZ XX, predY,

0
510

15
20

0
5

10
15

20

0

0.01

0.02

6

7

8

9

ZZ XX, Y,

0
510

15
20

0
5

10
15

20

0

0.01

0.02

Figure 16: Left frame shows a motion curve described in
function of the flexion and varus/valgus angle. The right
frame shows the motion curve once it has been smoothed

 58

Using the described implementation and considerations we produced a smooth

motion model of the knee joint without collision or gap created between the

geometrical models. The joint motion is smooth on the range of motion, and

both condyles are touching. Moreover, screw-home appears to be created.

 59

66 SSIIMMUULLAATTIIOONN

In this chapter, we first describe how we improve the geometrical knee model so

that it looks realistic when it is displayed to the user� eyes. Then, the core

simulation application is detailed and simulation results are given.

66..11 PPrroocceessssiinngg ooff tthhee mmooddeell uussiinngg OOppeenn IInnvveennttoorr

To create the simulation, we chose to use some APIs that allow using a model

with attributes. In effect, OpenGL does not have any dedicated model, so a

loader must be designed for each type of file and the attributes of the models

must be hard coded. For a review of the basics on the types of models and

rendering attributes, the reader should refers to Appendix C.

The knee model we want to obtain will have to be textured, smoothly shaded,

and lighten by a light similar to the lighting condition during the use of the VRDA

tool. To modify our knee model in Inventor 2.0 format, we are using Open

Inventor. Open Inventor is an API built on top of OpenGL coming with some tools

useful to manipulate files in Inventor format.

The Inventor format describes a scene graph organized as a hierarchy of

geometry components and attributes arranged in a tree as shown in Figure 17.

Any attribute modify the geometry of some components of the models that are on

the same level, at its right, as well as on the child levels placed under it. For

example, a scaling attribute can act on the scaling of the tibia if the tibia

 60

component is placed on the right or on the child level in the case of the knee. The

figure shows gview a GUI that is used to view and modify the scene graph of a

model as well as the model itself.

The use of the Inventor format is convenient because it provides us with tools

allowing the visual manipulation of a more intuitive data structure than the hard

coding of equivalent functions. Moreover, because it is a famous format it can be

converted into or from any famous format as DXF (Alias/Wavefront), PFB

(Perfomer Binary), Object (3DStudio), FLIGHT (MultiGen), or others.

We were interested in the bones of the model and thus we used gview to

separate the files in several components. We discarded the muscles, the patella

and the ligaments because they were not considered at this time in our synthetic

Figure 17: The Open Inventor tool gview. On the left of the application, the user can see the
model corresponding to the scene graph on the right. The model can be manipulated using
the mouse

 61

knee joint model. We kept the tibia, the fibula, the menisci, and the femur and

created two components that we previously modeled, the femur and the tibmen.

The tibmen was composed of the tibia, the menisci, and the fibula for the

simulation. We removed redundant attributes from the tibmen scene graph due to

the concatenation. We then added texturing, scaling, transparencies shading,

and lighting condition attributes.

A marble texture fine-tuned for similarity with a bone texture was used for the

bones. The texture was saved as a RGB and loaded with the model. The scaling

was setup so that the unit of measure of the model was the meter, which is the

unit of OpenGL. Smooth Phong shading was specified. The crease angle of the

model was set to ∏ and the model was specified to be convex for guaranteed

smoothing of the surface of the joint. A transparency of 0.4 was applied to the

menisci to be able to see through the menisci and see if the condyles were

touching.

The model was then optimized using ivfix that transformed the Inventor ASCII

format into an Inventor binary format that is optimized for the rendering hardware.

Then, the models were converted into Performer Binary format using pfconv

since we use Performer to render our model as described in the next section.

 62

66..22 PPeerr ffoorrmmeerr aappppll iiccaatt iioonn

In this section, we describe how we used Performer as well as the previously

built geometrical model of the knee joint to create a virtual model of the bones of

a generic knee joint.

66..22..11 SSiimmuullaatt iioonn IImmpplleemmeennttaatt iioonn

In order to get the best performance from our rendering hardware, we used a C

library built on top of OpenGL and developed by Silicon Graphics (SGI). This

library is a C++ API that has C wrappers to C++, and which allows the coding of

real-time simulations using the rendering hardware at its limits. The API provides

a scene graph similar to Inventor.

The library contains numerous loaders that allow building a scene graph out of

files in any kind of format. Performer includes culling and level of detail

capabilities that traverse the scene graph and attempt to remove the most

polygons it can to lower the rendering load, based on what the user sees. Finally,

performer is running several processes performing the application, the culling,

and the draw functions.

These processes are distributed among all the processors and the user can tune

the workload among the processors. Thus, Performer is attractive to use even if

the language needs an advanced understanding of the graphical processing as

well as OpenGL.

 63

The application process is the part of the code that the user can modify freely to

program the behavior of the application. The Performer developer option includes

many sample codes that allow starting without having to understand the complex

intrinsic of the Performer philosophy.

Because the X system calls are cumbersome to implement to control the

interaction with the mouse for example, we used a sample program

demonstrating the use of the mouse as a trackball in a Performer application:

trackball.c. For further review of the structure of the code, the reader can look at

vrda.c whose listing is given on the floppy in the directory simulation on the

floppy disk.

The control of the object using a trackball allows translating and rotating the

object as desired in an easy way. The SGI mouse has three buttons that make

this control even easier. The way that these controls are programmed in the

trackball sample code allows translating the object on the X and Z-axes of the

word referential by holding the left button and moving the mouse. The middle

button is used to rotate the object around its origin. The right button allows

moving farther or closer by translating the object along the Y-axis.

We modified the initialization of the code to load the models from the command

line and to create a scene graph at running time using any type of 3D model file

format. At run time, the simulation application load the lookup table generated by

the modeling application. The lookup table is loaded in an array of six

 64

parameters: three rotations around the X-, Y-, and Z-axes and three translations

along the same axes.

The X- and Z-axes of rotation were intended to simulate respectively the flexion

and varus/valgus angles of the knee and were used to rotate the femur in order

to keep the tibmen vertical during the modeling process. In effect, rotating the

femur to produce the flexion and varus/valgus angles brings many simplifications

in the computation as explained in the result section of the modeling.

The frame of reference in Performer is oriented differently than in OpenGL. In

OpenGL, the frame is such that the X-axis is going right, the Y-axis is going up

and the Z-axis is going toward the viewer. The Performer axis is such that the X-

axis is going right, the Y-axis is going away from the viewer, and the Z-axis is

going up. OpenGL and Performer use of different types of referential. Therefore,

we also have to perform the flexion and varus/valgus respectively around the X-

and the opposite of the Y-axis in Performer to obtain the same motion than in

OpenGL.

Still in the initialization phase of the code, a scene graph is created to animate

the knee as needed. Performer has two types of coordinate systems on which

objects can be attached: the Dynamic Coordinate Systems (DCS) that can be

manipulated during the application and the Static Coordinate Systems (SCS) that

are setup once for all in the scene.

When using the Performer loader, one must attach the object to one or the other,

depending whether the object must further move or not. The femur is then

 65

attached to a DCS, and the tibia is attached to two consecutive DCSs. The

reason why we attached two DCS to the tibia is due to the modeling strategy we

adopted.

In effect, we have to apply two rotations to the tibia first to align it to the ∆ axis at

the considered attitude of the knee. Then, we need to translate the frame of

reference so that the Y-axis is along ∆, and then rotate around ∆ to simulate the

screw-home angle. Because we have the sequence rotation-translation-rotation

again, we must divide the motion using two coordinate systems: the first

coordinate system moving with respect to the scene coordinate system is to

simulate the flexion and the varus/valgus angles. The second coordinate system

is to set the screw-home angle and the position of the tibia computed by the

modeling algorithm in this new oriented frame of reference.

66..22..22 SSiimmuullaatt iioonn rreessuull ttss

The use of the Performer binary format allows loading the models in a short time

into the application at running time using the dedicated loader for the Performer

binary format. The model appears accordingly to the attributes that have been

specified using Inventor.

Because we only want to playback the generated modeling motion of the joint,

we only move at computed discrete angles, that is using increments of one

degree. We correct the joint motion with a polynomial of degree six as explained

before in the algorithm implementation section. Thus, an interpolation method

 66

could be based on a polynomial of degree six as well in order to obtain

parameters at any angles. Because, the tracking of the flexion is currently not

implemented, we did not use interpolation at this time.

Using the animation at one-degree intervals, the motion appears to be smooth

and the condyles were touching during the whole range of flexion of the joint

considered. Using the application described, the model could be rendered and

examined in real time on a monitor from any viewpoint using the trackball

manipulation. Figure 18 shows several frames taken during the animation of the

joint from several viewpoints. A videotape is also available where both the results

of the animation and the inner working of the algorithm are demonstrated.

Figure 18: Some frames taken from the resulting rendered version of the knee joint.

 67

77 AAUUGGMMEENNTTEEDD RREEAALLIITTYY VVIISSUUAALLIIZZAATTIIOONN

In this chapter, we shall describe the setup used to perform the visualization of

the synthetic model (the bones) on the real world (a knee joint) using augmented

reality technology. The setup can be divided in three parts: the visualization

device, the control devices, and the tracking devices. The software application

used for the visualization was improved from the one developed in chapter 6.

Therefore, the functionalities of the old application such as the trackball control of

the virtual scene were still usable.

77..11 TThhee vviissuuaall iizzaatt iioonn ddeevviiccee

The visualization technology used in our project is called augmented reality

because it augments the user view of the real world by superimposing virtual

information on real objects. Furthermore in our case, we aim to superimpose

virtual anatomy on its real counterpart. This process is known as registration.

The visualization device used to create augmented reality is called a see-through

stereoscopic display. The term see-trough refers to the fact that the user can see

the real world through the display device so that the virtual world and real world

superimposition can be done. The term stereoscopic refers to the fact that the

user can see in 3D by presenting to an image to each eye (i.e. stereoscopic pair).

One of the displays available in our lab is a Head-Mounted Display (HMD) called

I-glasses from Virtual-IO. This display constitutes a portable HMD for simple use,

but does provide Inter-Pupilliary Distance (IPD) like most of the commercially

 68

available HMDs. However, the IPD-tuning is necessary to display virtual objects

at a correct depth. Moreover, the quality of the colors and the resolution

(320x240 pixels) are poor.

An important research effort in our lab over the last 4 years has been to conduct

experiments on human depth perception in virtual environments. A bench-

prototype see-through stereoscopic display has been built for this purpose and

we chose to use it for the first implementation of the VRDA tool. The bench is not

Figure 19: The bench-prototype see-trough stereoscopic display used in our laboratory. The
TVs, lenses, and beamsplitters can be seen on the pictures. The user installs his/her head on
the chin and front head rest areas (in white). The display can be physically translated on the
left and on the right to provide the user with parallax cues.

 69

portable as a HMD and thus does not allow a large working area but has the

advantage to be calibrated and tunable in IPD in opposition to most commercial

systems.

The display is installed on an optical table 3 meters long and 1.5 meter wide.

Figure 19 shows a close-up of the display itself. The display is mounted on a

horizontal rail perpendicularly to the line of sight of the user, so that the user can

translate the display left and right in front of the scene. This translation provides a

parallax cue of the scene in front of the user so we called this ramp the head-

motion parallax stage, also referred as the parallax stage.

The display itself is composed of

two arms mounted parallel to the

parallax ramp. On each arm, a

see-trough optical system is

composed of a beam splitter, an

imaging lens, and a TV screen as

depicted in Figure 20. On each

arm, the image displayed on the

TV screen is virtually imaged

through the lens and then reflected

towards the eye by the

beamsplitter. Because the

beamsplitter is semi-transparent, the real world in front of the optics is seen by

the user as well. The distance between the two arms can be adjusted so that the

Virtual images of the screens

TV screen

Lens

Beamsplitter

Point in
space

EL ER

Figure 20: Schema of a stereoscopic see-through
head-mounted display. EL and ER are the locations
of the user�s eyes.

 70

centers of the images projected to the eyes of the user can be aligned with the

centers of the pupils. This capability provides effective interpupilliary distance

(IPD) adjustment specific to each user.

The optical components have been precisely centered on the center of the

screen and oriented by an optical calibration procedure using a conventional

laser alignment technique. The imaging lens has been custom-designed using

off-the-shelf single lenses and optical design software. The focal length of the

lens has been measured and entered in the software. By placing the display at

the focal point of the lens, a virtual image of the screen is projected at the infinity.

The nominal distance used in our depth perception experiment is 0.8 meter. We

used the optical model to compute the distance of the display to the focal point of

the lens so that a virtual image is created at this 0.8 meter. Matching the distance

of the real object and of the optical image allows eliminating eyestrains by

making the user focus at a unique distance.

When looking at the real world, a user can see in 3D because his/her eyes see

two different images and the location of each point in space can be recovered by

triangulation. Inversely, the two images a user should see of an object in space

can be shown to a user�s eyes with the described setup so that a 3D view of the

object in space can be simulated. To generate the two images, a model of the

object to display is created in the virtual world and the rendering of the object is

done from two different viewpoints apart of distance equal to the IPD.

 71

Our graphical workstation directs the graphical output to only one destination.

The Multi-Channel Option (MCO) is a device connected to the workstation that

can create four RGB outputs by splitting in four parts the framebuffer area

typically displayed on the monitor. To create two images for the stereoscopic

display, we draw in the upper right quarter to create the image for the left eye,

and we draw in the lower right quarter to create the image for the right eye. The

original console area is 1280x1024 pixels large so each quarter area is 640x480

pixels large, which correspond to the NTSC format. Each RGB output, giving

three signals (Red, Green, and Blue) in one output, is fed to a video scan

converter transforming the three signals in one NTSC signal. This signal is then

sent to one of the screens of the display using a coaxial cable.

77..22 TThhee ccoonnttrrooll ddeevviicceess

In order to set the visualization parameters, some control devices were setup to

provide an interface between the real and virtual worlds. The control devices we

considered were a potentiometer and the keyboard.

The potentiometer is connected to a micro-controller board, the Little Giant from

Zworld, which handles the control of several devices in the depth experiments.

The use of a micro-controller allows to discharge the graphical workstation of the

load produced by the interaction controls and to adapt some devices for which

the workstation does not have any inputs. The Little Giant is a micro-controller

board based on a Z80 microprocessor, which has ROM, RAM, counters, A/D

 72

converters, and other I/O interfaces. The board is also equipped of several serial

and parallel ports.

One of the serial ports can be connected to a PC. The PC has an application

allowing developing code in Dynamic C, a dedicated C language for the micro-

controller allowing the programming of the behavior of the board. At run time, the

code is compiled, sent to the micro-controller RAM through the serial link, and

then executed by the microprocessor. When the code developed is final, an

EPROM can be engraved and the micro-controller can be used to run constantly

the same code. The micro-controller then reacts as a dedicated hardware device

without the need for a PC.

The second serial port is used to communicate with the workstation. A library of

functions has been developed to read and write to the serial port to communicate

with the micro-controller via serial communication using special characters. Each

character sent corresponds to a request to read the output value of one of the

interaction devices. In return, the micro-controller sends the requested reading

that can be used by the workstation.

The potentiometer is connected to one of the A/D converter of micro-controller

with a precision of ten bits resolution which can be read by a dedicated Dynamic

C instruction and sent to the workstation. This setup implements a general-

purpose potentiometer that can be used to modify at run time some specific

parameters. The parameters to tune are selected using dedicated keys of the

 73

keyboard. The code developed and reported in the last chapter gave us a

framework to implement such control of the keyboard inputs.

77..33 TThhee tt rraacckkiinngg ddeevviicceess

In our virtual environment application, tracking must be performed to measure

the position and orientation of both the user head and real counterparts of the

graphical objects. Measuring the user�s head position and orientation allows

modifying the location and orientation of the viewpoint in the virtual world to show

the user what he/she should see according to the attitude of his/her head. This

action is called head tracking. The tracking of an object in an augmented reality

environment, where the user see both the real and virtual world, enables

displaying its virtual counterpart with the same attitude in the virtual environment

for real/virtual registration. We currently use two different devices to perform the

tracking: the parallax stage for head tracking and the Optotrak for object tracking.

The first tracking device, the parallax stage, is the head tracker. The only degree

of freedom allowed by the parallax stage is a translation of the user�s head to the

right or to the left. The stage�s cart is attached to the slider of a linear optical

encoder of resolution 5 microns. The linear encoder reads a rail engraved every

5 microns with an optical detector as it moved. This reading produce two square

electrical signals with a phase difference of 180 degrees. The logic signals are

sent to the micro-controller Little Giant described in the previous section.

The micro-controller has been improved to accept the linear encoder signals with

a 16 bits counter incrementing or decreasing according to the direction of motion

 74

of the encoder. The micro-controller has been programmed to make the periodic

reading of the pins of the IC counter output reflecting the current relative position

of the encoder since the last reading. Then the microcontroller reset the counter

and update the absolute position of the ramp. This position is itself relative to the

initial position of the ramp at startup. This position being relative to the initial

position of the stage, the calibration of the parallax stage must be done at run

time using a physical stop. Upon request, the position read by the microcontroller

is sent through the serial link to the workstation.

To perform the tracking of real objects we employed the Optotrak 3020 from

Northern Digital, an optical tracker measuring the spatial position of infrared

LEDs, shown in Figure 21. Typically, the principle of operation of an optical

tracker is based on the use of multiple camera views of some markers (LEDs).

The 3D to 2D mappings of each point in space to each camera�s CCD are

known. The relative transformations from one camera to another are also known.

Given these parameters for each point, one can draw some lines to backproject

the points detected on the cameras� CCD into lines crossing in space at the 3D

position of the point observed.

 75

The Optotrak measures the static position of a marker (LED) with a typical

resolution of 0.01 mm and accuracy of 0.1 mm (Northern Digital, 92). This

measure can be made effectively within a range of 2 to 6 meters in depth and in

a field of view of 34 degrees horizontally and vertically for each of the three

cameras. The processing unit sends a report of the position of each LED through

a SCSI link. The measuring frequency is maximal for one marker and its maximal

value is 3600 Hz. This value progressively decreases as the number of markers

to track increases.

The Optotrak comes with a set of tools for PC to construct a rigid body out of

several markers. A rigid body is a structure composed of several markers placed

on a rigid object, so that the relative position of the markers is kept constant with

respect to a referential attached to the object. The Optotrak system knows the

Figure 21: The Optotrak 3020 from Northern Digital (left frame) mounted on a stand with its
three cameras. A rigid body or tracking probe (right frame) with 6 markers and the control
device to fire the LEDs.

 76

rigid body�s structure and thus is able to determine the position and orientation of

the rigid body attached to the object to track.

The computation is done by a dedicated processor built in the tracking system

that search the transformations to apply to the rigid body to align it with the

measured position of the markers. To compute the attitude of the rigid body,

three markers on the object to track must be seen by the three cameras of the

tracker so that all six degrees of freedom of the rigid body are set. These

transformations are transmitted through the SCSI link to the workstation using

them to render the graphics without any further processing. An API on the

workstation side reads data at a frame rate approaching 100 Hz for one rigid

body, which decreases as the number of rigid body to track increases. The

workstation can then render the virtual counterpart of the tracked object in the

same attitude in the virtual world so that registration is achieved.

Two problems inherent to optical tracking are the deterioration of the spatial

resolution as the object tracked is going further away from the camera, and the

possible occlusion of some of the markers. Occlusion is problematic when some

of the markers exit the tracking volume or are hidden by the object itself, so that

less than three markers are seen by the cameras. These problems can be solved

by first keeping the object to track in the tracking volume. Further, the occlusion

by the object itself can be prevented by spreading out cleverly the markers all

around the object to track. If the distribution of the marker is designed correctly,

three markers can be seen from the three cameras for any attitude of the tracked

object.

 77

88 AA PPRROOPPOOSSEEDD VVIISSUUAALL CCAALLIIBBRRAATTIIOONN MMEETTHHOODD

A main problem encountered in augmented reality technology is the difficulty to

perform the correct registration of real and virtual entities when they represent

the same object. The registration errors have static and dynamic causes.

The static errors can be produced simply by the incorrect calibration of the

components of the system. Because the components of an augmented reality

system are issued from multiple technologies (i.e. electronic, optical,

mechanical), the overall calibration of the system is tedious and challenging and

often not completely performed. Because the anatomical parameters of the

person using the system are part of the correctness of the visualization, as the

IPD for example, static errors can be introduced by the user itself if a user-

specific calibration is not included. The dynamic errors are produced by the

processing time of the system: there is a delay between an action happening in

the real world and the corresponding reaction in the virtual world. The technology

used to build the system plays an important role in achieving a good calibration.

Tracking, graphical, and optical calibration have all to be performed to achieve

the complete static calibration of the system, but most studies have taken in

account some of these components (Janin, 93; Holloway, 95). To cope for the lag

due to the processing of the information in the dynamic case, prediction

techniques have been developed and implemented (Azuma, 95; Welch, 97;

Bajura, 95). However, such techniques can only work if the static problem is

 78

solved. Finally, commercial hardware components used to build the virtual

environments are still often not adapted to implement successfully a calibration

technique. For example, only-magnetic trackers do not provide consistent

reading. Another example is that most HMDs do not include IPD adjustment.

The contribution of this research toward the calibration is to first generalize

several methods solving the tracking of specific components into a unified

method for the complete system that account for human variability. Only the

static registration will be considered because dynamic registration is not needed

at this time. Further research will complete this study to include the dynamic

case. Finally, to solve the inadequacy of some commercial hardware, we used

some custom designed hardware developed in previous studies.

We introduce an all-visual calibration method divided in two parts. One part is

performed once for all for the system�s components. The second part is achieved

by interactive adjustment of some parameters of the system by each new user.

88..11 VViieewwppoorr tt mmeeaassuurreemmeenntt

The displays used in stereoscopic devices have features of operation not always

intuitive. The apparent viewing area is usually smaller than the framebuffer and

its center is often offset with respect to the framebuffer center. Figure 22 shows

the case of our configuration. Consequently, the image can be cut and not

centered, and calibration errors will appear if the viewing area is not correctly

specified in software.

 79

In order to determine the part of the framebuffer that is visible, a scanning of the

framebuffer must be performed at the pixel level. The whole window area is first

considered, and a vertical line of one pixel is moved using the control devices

from left to right by interaction of the user. The user notes the coordinates in

pixels of XLMIN when the line appears for the first time and XLMAX when it

disappears. The same operation is done for the vertical scan. These two

operations are performed for both screens. The rendering of the scanning line is

done by changing the pixels values directly in the framebuffer. Once this

operation is done the viewport area, defined as the area of the frame buffer

actually seen, can be specified to the rendering hardware using appropriate

instructions. Consequently, the rendering will only happen in these areas.

Y1

0

0

X1 XLMIN XLMAX X2
0

YLMIN

YLMAX

YRMIN

YRMAX

Y2
Y3

XRMIN XRMAX

Y

X

Figure 22: Illustration of typical viewport areas in the frame buffer. Here, in the case of our
configuration, the viewports for the left and right are smaller than the rendering windows and
their center are not at the same locations than the centers of the windows.

 80

Once the extents of the visible areas of the screens have been determined, the

centers of the viewports corresponding to the center of the screens can be

determined. The optical axis of the optical elements of each arm of the

stereoscopic display must be aligned with the center of the attached screen. This

operation is done using a laser-based alignment method.

In our bench-prototype display, the calibration of the viewport was performed

once for all when calibrating each arm. This operation has to be done each time

the displays are changed.

88..22 OOpptt iiccaall ddiissttoorr tt iioonnss ccoommppeennssaatt iioonn

The focusing lens used to project a virtual image of the screen at nominal

viewing distance has the advantage of making the user converge and focus at

roughly the same distance. Such a setting reduces eyestrain. However, the

focusing lens introduces optical distortion. If the distortion is not corrected, the

user observes a distortion of the virtual image around the center of the line of

sight that induces depth perception errors.

The optical distortion (3rd order is considered here) is producing a displacement

of the position of each pixel relative to its distance from the center of the screen

previously aligned on the optical axis of the lens. In our setup, the lens creates a

pincushion distortion that produces a concentric displacement of the pixels from

the optical center. A grid seen through this lens is shown in the left frame in

Figure 23. By pre-distorting the grid with the corresponding invert distortion,

which is a barrel distortion shown on the second frame, one can void the effect of

 81

the optical distortion and obtain the correct grid shown on the third frame.

Because our display has been modeled using optical modeling software, the

distortion coefficients are known and the barrel distortion is completely defined.

This calibration can be done interactively for any optical system whose optical

parameters are not modeled. A grid distorted according the distortion model of

the optical system is displayed. The grid size and the distortion coefficients must

be tunable interactively, so that the user can align the grid graphical grid vertices

with the vertices of a reference grid placed perpendicularly to the line of sight.

When both grids align, the coefficients that provide the desired distortion for this

grid can be recorded.

During the use of the system, the rendering of a frame is terminated by a

remapping of the pixels of the rendered image so that the precomputed distortion

is performed. This remapping is done in software by rendering into an off-screen

buffer the original scene, reading into texture memory, and tilling the texture on a

mesh distorted according to the coefficients of distortion. However, on our

rendering platform and for most of the current platforms, this processing takes a

Figure 23: Illustration of the method of pre-distortion to compensate for the optical distortion.
On the left frame, the pincushion distortion produced by the optics on a grid. The invert
(barrel) distortion is applied on the rendering (grid) before to be displayed. On the right frame,
the pre-distorted grid appears correctly through the optics.

 82

non-negligible time and an interactive rate of 30 Hz pleasant to the human eye

cannot be reached

Hardware implementation should be considered using the same tilling technique.

In such hardware, the mapping from some tessels in a non-distorted grid to

others in a predistorted grid could be specified. The configuration could be

changed according the display and/or the changes done on it. The manufacturer

of a HMD is often the only one to know the characteristics of the optics of the

HMD. Therefore, the mapping coefficients of optical system should be hardwired

into the display.

88..33 FFiieelldd ooff vviieeww aanndd eeyyeeppooiinnttss mmeeaassuurreemmeennttss

The field of view is the first parameter of the calibration procedures that is user-

dependent. For our specific system, where the image is not collimated, the

optical system is forming a virtual image of the screen at the nominal viewing

distance, which is about 0.8 meter in our case. We can imagine to simplify that

we have two very large screens placed somewhere at a specific distance for

each eye and their display overlap by some amount. The optics can then be put

apart from the reasoning under these imaging conditions.

Taking the center of rotation of the eye to render a scene has been shown to be

correct when looking at the center of fixation but not in the peripheral vision

(Vaissie, 98; Rolland 98). Because eye tracking is still a technological challenge,

the center of rotation of the eye is usually taken as the center of projection. Thus,

 83

the center of the perspective frustrum used to render the virtual scene must be

attached at the center of rotation of the eyes.

The eyepoints EL and ER shown in Figure 20 are changing with respect to the

anatomy of every individual. Let�s assume that a rectangle of known dimensions

is placed at a known distance from the eye-point and perpendicularly to Z, the

direction of viewing. If the field-of-view is correctly set, a virtual rectangle of the

same dimensions located at the same position is registered with the real

rectangle when looking in the display. If this is not the case, the field of view can

be adjusted interactively by the current user so that both the real and virtual

rectangles appear visually registered. However, the location of the eye-point

varies between individuals. Therefore, the calibration technique must be

designed to determine both these values at the same time.

Figure 24: A method to determine both the eye-point location and the field-of-view by
interactively registering virtual and real entities.

(meters)
X

dLEZ

(meters)
X
dLEZ

(degrees))
d

X(tan

(pixels)
LXLX

ZXXd

1

2
2

1

1
1

max1

1221

21

=

=

=

−
=

−θ

X1

X2

L2

Z1

Z2

L1∆∆∆∆∆∆∆∆ZZ

XMAX dd

Virtual image
of the screen

E

 84

To solve this problem, we propose a variant of the technique previously

described. The technique consists in using two real objects that are placed at two

different depths as shown in Figure 24. The depth difference between the two

objects is easily accessible in the real world. In our case, it is measured by using

our optical tracker.

We use the method described in the viewport calibration to align visually the

vertical sides of a real rectangle of known dimension with two vertical lines

scanning the rendered area. For this calibration, the rendering of the lines is

done by rendering two vertical cylinder with a small diameter in OpenGL using an

orthogonal projection and turning the anti-aliasing on. The anti-aliasing allows

reducing the resolution of the measurement to sub-pixel. The orthogonal

transformation is set so that the pixel values are related to the distance between

two three-dimensional lines to register with the side of the real rectangle.

A user ready to use the system can quickly register interactively two virtual lines

with the sides of two real rectangles placed at two distances Z1 and Z2. The

procedure must be done for each eye since both fields of view can be different.

The system records the dimension in pixels of the objects in the framebuffer, X1

and X2. Using these values, the horizontal field of view for each eye and the

location of the center of rotation of the eyes, EL and ER, are determined. The

determination of these parameters can be done using the equations given in

Figure 24. X are in pixels, L and Z are in meters. L is the dimension of the real

object along the horizontal direction. Note that the calibration of the field of view

has to be done only for each eye in only one dimension since we fixed the ratio

 85

between the horizontal and the vertical field of view when the viewport is

calibrated.

Once the fields of view have been determined, they are specified in OpenGL to

ensure correct rendering. Using this calibration method, the position of the point

E used in the next calibrations can be determined by taking the middle point

between EL and ER. Because this point is located where the user head is and

cannot thus be marked physically, a landmark placed at a known distance from

this point is used instead.

88..44 IInntteerrppuuppii ll ll iiaarryy ddiissttaannccee aaddjjuussttmmeenntt

The second user-specific parameter is the inter-pupilliary distance (IPD), the

distance between the eye-points of the subject. This distance must be applied to

the displays so that the optical axis of each arm of the setup is aligned with the

optical axis of each eye of the user. This allows consequently aligning the

centers of the screens with the optical axes of the eyes. The IPD must also be

used in the rendering to place the viewpoints in the virtual world used to render

the view for each eye. We measure the IPD using an optical device called

pupilometer.

Most commercial HMDs do not offer an adjustment of the IPD distance and thus

the perceived depth of virtual objects is incorrect. A solution to this problem is to

render the virtual scene using a perspective projection centered at the location of

the viewport that is aligned with the entrance pupil of the user. This technique

known as off-axis projection corrects the depth perception problem. However, the

 86

pre-distortion of the image exposed in the section 2 of this chapter must be

recomputed for each user since the center of projection move with respect to the

center of the lens around which the distortion occurs. Therefore, off-axis

projection is usually not used.

Our current setup allows adjusting the IPD distance so that the subject can

perceive at the correct depth. The position of each arm�s optical axis has been

marked precisely during a laser-based optical calibration and is used toward this

goal. After the field of view has been tuned for each eye individually, a test of the

correctness of the calibration can be done by placing a real object at a distance

known from E determined in the previous calibration step. Then, its virtual

counterpart can be rendered from two viewpoints separated of the IPD distance

and registration should be verified.

88..55 TTrraacckkiinngg ccaall iibbrraatt iioonn

The tracking calibration is an important component for the registration of real and

virtual entities because it conditions the correct measurement of the attitude of

the real entities and thus the correct attitude of their virtual counterparts. We

used two tracking devices in our experiment, the Optotrak and the parallax ramp,

and we will assess their calibration in the following. Several referentials will be

used in this section and their location can be seen on Figure 25. For the details

of the transformation matrices used in this section, refer to Appendix D.

We track the knee joint using the Optotrak. In our current VRDA prototype, the

area viewed by the display is limited and the tracking technique of the subject�s

 87

knee is not developed yet. Therefore, we did not use the knee of a subject as

real counterpart of our synthetic knee model, but rather we used a mannequin

leg. The mannequin leg has some fixed shapes and dimensions and it cannot be

flexed. Consequently, the calibration of the tracking of the leg is simplified since it

is limited to the tracking of a rigid body. When, the system will be improved and

the knee joint of a subject will be tracked dynamically, some new calibration

techniques will have to be designed. In effect, the tracking of the position,

orientation, and flexion angle of the knee joint will have to account for the

variability of knee size and shape among human subjects.

To be able to track the mannequin leg with the Optotrak, a rigid body must be

built. We attached six markers on the leg so that three are on the top of the

femur, and three are on the lower end of the tibia. By distributing the markers on

these two extremities, one get the most precision on the orientation of the model

around the two axes perpendicular to the long axis of the tibia. The reason to

have more precision on these axes is to provide the best alignment along the

length of the leg where error will be the most noticeable.

The Optotrak� software tools allow creating a rigid body using different ways. The

user can specify directly the coordinates of the markers with respect to the frame

of reference of the rigid body. Another more attractive way to construct a rigid

body is to show the rigid body once built to the cameras of the tracker so a rigid

body can be constructed out of multiple frames. The rigid body is manipulated

slowly during this procedure so that all markers are in view during one frame at

 88

least. For each frame, the spatial position of each marker is recorded and after

analysis of these data, the tool produces a rigid body.

The cameras of the Optotrak are considered to be precisely calibrated in the

range considered for this experiment so that it makes correct position

measurements. However, the calibration of the cameras is an issue that should

be considered seriously in a custom built apparatus because it conditions the

precision of the measurements. The Optotrak recover the position and orientation

of a rigid body composed of multiple markers by aligning the model it has in

memory with the rigid body formed by the markers it sees.

Because in practice, the markers are fired sequentially for the Optotrak to be able

to recognize them individually, there is an error in the detected position of each

consecutive marker after the first marker. Consequently, the rigid body is aligned

optimally to the markers� positions that are incorrect, and thus the rigid body

attitude itself is incorrect. While there is a solution to this problem using

prediction of the position of the markers based on the velocity and acceleration of

the probe, this error is assumed negligible at this time until further assessment in

progress are completed. We make this assumption because of the high

measurement rate of the tracker and the slow motion that we will use in our

registration experiment.

 89

Let O be the referential attached to the optical tracking system. Let E be at the

middle of the eye-points of the user. Let F be the referential attached to the

mannequin leg. To display the virtual knee in 3D at same position and orientation

than the real knee, the rendering engine must know the transformation MEF. The

knee model can then be translated and rotated from the origin E to achieve this

transformation and place the object (knee) in the virtual world. Finally, by shifting

the viewpoints of half the IPD distance along the horizontal direction, the views

for the user�s eyes can be generated.

The referential F attached to the mannequin is tracked by the Optotrak, so the

transformation MOF is known at any time. The referential E is tracked by the

XX--aaxxiiss

OO
XXOO

ZZOO

YYOO

XF

YF

ZF

XXEE

YYEE

ZZEE

ZZ--aaxxiiss

TTrraacckkeerr

EE

XXWW

YYWW

ZZWW
WW

Leg

DDiissppllaayy

Figure 25: The referential used during the calibration procedure. The axes X and Z are
determined by both ramp attached to the optical table. The referential E is attached to the
cart of the parallax stage. The referential O is attached to the tracking system. The referential
F is attached to the leg to track. Finally, the referential W is temporarily defined using a
marker align with a mire rendered on the display. The plans at relative known depth used
during the field of view calibration can be seen in dotted line.

 90

parallax ramp as the user moves left and right. Head tracking will later be

achieved by using a rigid body attached to the display. The display will be a HMD

mounted on the user�s head, so that the user will be provided a larger working

volume. At this time, the transformation MOE will be known at any time since the

tracking of the head will be done by the Optotrak. Therefore, the transformation

MEF, needed for the rendering, will be simply computed by combining the invert of

the transformation MOE with the transformation MOF.

 Currently the parallax stage is used for the head tracking so the problem is more

complex. We define an additional frame of reference W to solve it. The referential

W is attached to the optical table in our setup. The X-axis of the referential is

oriented along the width of the table, the Z-axis is horizontal along the length of

the table that is also the direction of sight, and the Y-axis is vertical and going up.

Practically, the X-axis is defined by moving the parallax ramp left and right. The

Z-axis is defined by moving a translation ramp attached to the long side of the

table, and the Y-axis is defined by cross product of the two previous axes. The

direction of each of these axes can be defined in the frame of reference of the

Optotrak by moving each ramp to its two extreme positions. By recording, for

each extreme position, the location of a marker attached to the ramp and

subtracting the coordinates of the marker�s locations, one can compute a vector

director of the corresponding axis. This procedure had to be done only once,

each time the relative position and orientation of the optical table with the tracker

changes.

 91

During the field of view calibration, EL and ER have been recorded to be at a

height Y0 and depth Z0. A marker or the tip of a probe is placed in W0, roughly at

the nominal distance (0.8 m in our case) and at the middle of the width of the

table. The position of W0 with respect to the eye-points is known after the field-of-

view calibration except for the translation along the X-axis. A three-dimensional

bull�s eye is displayed at the same depth and height than the point W0 with

respect to the eye-points, and the user task is to visually align it with the physical

marker by translating the parallax stage. After this alignment, the middle of the

eye-points E and W0 have the same X coordinate. Therefore MWE can be

determined.

When the parallax stage is placed at such a location, the linear encoder

measures its position, so that the following positions of the parallax stage are

given with respect to this origin. During the use of the system, the transformation

MWE is biased with an additional translation along the X-axis equal to the position

of the stage. The transformation MOW is known by simply measuring the position

of the marker with the Optotrak. Therefore, the transformation MOE can be

computed by combining the transformations MOW and MWE. Finally, the

transformation MEF can be computed as described before so that the virtual entity

can be represented with reference to the user head-position.

At this point, the referential F is attached to the mannequin leg and this

referential is driving the referential K of the geometrical knee model accordingly

in the virtual world. However, generally these two referential are not located and

oriented the same way when the virtual model of the bones is actually visually

 92

correctly registered into the mannequin leg. The reason for this is that the tool to

construct a rigid body shows only the markers and not the real object supporting

them as well as the virtual model that we want to register.

The last calibration step to solve this problem consists in interactively registering

the virtual (knee model) and real (mannequin) entities so that the result is visually

satisfying. This is done once for any new virtual or real model used by a user for

who the system has been calibrated. The task consists in varying the translation

and rotation parameters of the transformation MFK so that the real-virtual

superimposition appears to be convincing for some positions and orientations of

the real-virtual entities. Once the correct transformation has been computed, the

referential of the rigid body is biased of MFK. Consequently, the registration is

correct next time a user utilizes the system.

The result of the calibration procedure for our current setup can be seen in

Figure 26. It can be seen that the subjective illusion of the graphical model of the

bones being inside the knee is achieved for several attitudes of the mannequin

leg. The quality of the result is however altered because the graphical model of

the bones used was from a male, while the mannequin leg is from a female, so

that the bones are out of the physically knee for some attitudes of this one. This

shows that a scaling of the bones should be done according to the subject knee.

 93

Figure 26: Registration results. The upper frames show the synthetic knee model used,
including the bones and the muscles, as well as the complete setup showing the mannequin
leg. The lower frames show two photographs taken through the optics with respectively a side
view and a diagonal view of the knee joint. Despite these views are monoscopic, the
impression that the knee model is inside the mannequin leg can be clearly seen.

 94

99 FFUUTTUURREE WWOORRKK

In this section, we describe future work. The first implementation of the VRDA

resulting from this research allows most of this multidisciplinary work to be

conducted on a first structure of the system.

A study is currently conducted by Dr. Wright at the Department of Radiology of

UNC to determine a relationship between the dimension of the bones and

dimension of external landmarks on patients having an X-ray done. This study is

going to give us a way to scale the synthetic bones with respect to the subject on

which the virtual is superimposed.

Dr. Biocca at the Department of Radiology of the University of Michigan will be

assessing the knee joint model we created. Iterative correction of the current and

future biomedical joints will be done.

Studies are conducted to develop appropriate tracking algorithms for our tracking

system (Davis, 1998). We are currently trying to improve the dynamic accuracy

and design some correction algorithms if needed.

Some probes to track the user�s head (Baillot, 1999) and the tibia and femur

segments of the subject will have to be designed. A calibration of the knee probe

and/or some optimization algorithms will be needed to locate correctly the bones

of any subject from external landmarks.

 95

Deformable models will be reviewed and some studied will be conducted to

attempt to improve them if needed. The ligaments will then be modeled using

these deformable models.

A novel lightweight HMD with IPD adjustment and using reflective technology is

currently designed and will be certainly used for the VRDA tool. Spherical

tracking probes are currently studied to track the user head from any viewpoint.

The software application will be transferred to PC as soon as graphics hardware

is efficient enough for normal use of the VRDA tool. The hardware will be

interfaced to the PC so that the system can largely available to medical

institutions.

Finally, we will have the tool assessed by collecting feedback from some medical

institutions trying the tool and the system will be iteratively improved if needed.

 96

CCOONNCCLLUUSSIIOONN

The study has been divided in two main parts: the modeling and the visualization.

A review of the modeling software packages was done to assess their

adaptability to the modeling of the knee joint. Moreover, current modeling

methods to perform the automatic modeling of the knee joint were reviewed.

None of the reviewed modeling packages and methods were found useful to

model the knee joint for the VRDA tool.

An algorithm using the actual geometry of the contacting surfaces of the knee

model considered as well as some biomedical kinematic constraints was

developed. The algorithm automatically searches the stable position and

orientation of two objects pushed against each other along a specific direction.

The algorithm is based on collision detection to detect the contact points and a

robust incremental procedure to move one of the solids toward the other in a

stable natural position.

Automatic modeling of the flexion motion of a 3D generic model of the knee

bones has been done by applying the algorithm at incremental motion step along

the flexion/extension and the varus/valgus angles. Smoothing has been done to

obtain some convincing results that have been presented. The motion

parameters have been recorded in a lookup table (position and orientation of the

tibia). To conform to pure flexion/extension, a procedure has been designed to

create a new lookup table used for the simulation where the varus/valgus angle

is zero.

 97

A Performer application has been designed as a basis to the rendering engine

that will be used for the VRDA tool. Mouse and keyboard interactivities have

been added to be able to see the resulting model from any viewpoint on monitor.

Realistic rendering of the textured bones and menisci has been achieved.

The components of the virtual environment have been described and their tasks

have been identified. The interactions devices as well as the implementation of

the interfaces between software and the hardware have been detailed. A

calibration procedure of the complete system has been given based on the

considerations specific to our system. Both optical and tracking calibrations are

taken into account in our approach. Early results of registration using a 3D-bench

prototype and a generic rigid leg in extension have been shown.

The presented research gives an initial framework toward the complete

implementation of the VRDA tool. This work provides an application that allows

calibration of the virtual environment, interaction in the virtual world, and real-time

visualization.

 98

AAPPPPEENNDDIIXX AA

RRIIGGIIDD BBOODDYY DDYYNNAAMMIICCSS

 99

The implementation of the laws of dynamics is problematic because the

equations used need to be integrated with respect to the time to obtain an

analytical solution. Here are the equations of the rigid body dynamics method:

By using these equations, the linear and rotational acceleration of an object

submitted to some given forces at a time t0 can be found. By integrating these

equations, the linear and rotational velocity of the object at the time t0+∆t can be

determined. This computation assumes that the acceleration of the object is

constant during ∆t, the integration step time. Integrating another time will lead to

the attitude of the object at time t0+∆t assuming that both the accelerations and

velocities are the same during the integration step time. If the velocity and

acceleration are not constant during a time step, errors are accumulated and

locityangular ve the is where

:as definedbody rigid the of onacceleratiangular the

terms) diagonal-(off

terms) (diagonal

 with

:as defined andbody rigid the to associatedtensor inertial the

body rigid the of mass ofcenter the of position the
force a ofpoint napplicatio the

:with

:as defined andbody rigid the on acting force aby produced torque a
body rigid the of onacceleratilinear the

body rigid the on acting force a

:where and

ω
ω
ω
ω

ωω

ω

ω

τ
τ

τ

�
�

��

��

�

�

�

�

���

�

�

��
���

�
�
�

�

�

�
�
�

�

�

==

�
�
�

��
	

−=

+=

�
�
�

�

�

�
�
�

�

�

=

×−=

==

�

�

��

z

y

x

xy

xx

zzzyzx

yzyyyx

xzxyxx

dt
d

dt
d

V
xydVmI

V
dVzymI

III
III
III

m

)(

)(

22

I

I

x
p

Fxp

a
F

.IaF

 100

divergent oscillations can be produced. Moreover, the result obtained is largely

dependent of the initial conditions of speed and position, as well as the time step

used. Rigid body dynamics also assume that the center of mass of the rigid body

is known, but it is difficult to determine it in the case of the knee. The equations

detailed above are for unconstrained rigid body dynamics, i.e. the rigid body is

supposed to be able to move freely in space because of the forces acting on it.

However, when a rigid body is constrained to a certain motion because there is

contact with another surface, one must use constrained rigid body dynamics. In

effect contact forces are not defined in amplitude and cannot be implemented in

the general framework as normal forces. This additional operation will make the

whole process even more challenging given that the contact forces are changing

at each step of the modeling. In front of the difficulty of this implementation, there

is at our knowledge no published result demonstrating a knee joint modeled on a

full range of motion using rigid body dynamics.

 101

AAPPPPEENNDDIIXX BB

MMOODDEELLIINNGG CCOONNFFIIGGUURRAATTIIOONN FFIILLEE

 102

MODEL 0 femur
MODEL 1 tibmen

INIT_POS 1 0 -0.02 0
INIT_STEP 1 0 0.005 0
INIT_ROT 1 0 0 0

SHIFT_MODEL 0 -0.5 0 0
ORIENTATION_MODEL 0 0 180 0
SHIFT_MODEL 1 0.4 0 0
ORIENTATION_MODEL 1 0 -90 0

DISPLAY 640 0 640 486
ZOOM 8 8 8
ANGLE_RANGE 0 0 90 1
ANGLE_RANGE 1 -15 15 1
CONTACT_RESOLUTION 0.0001
MODEL_STEP 0.001
RENDER WIRE

This file is a sample configuration file used for the modeling of the knee joint. The

keyword MODEL in the first line specifies to load the model femur and to assign it

to the reference rigid body, which we set to have the id 0. Upon the arrival of this

keyword, the OBJECT file femur.obj is loaded from the directory models. The

second model loaded here is the tibmen rigid body, described earlier as the rigid

body containing the tibia, the menisci, and the fibula.

The three following keywords specify respectively the initial position, motion, and

orientation to apply to this rigid body. Here, the initial position of the rigid body 1,

the tibmen, is such that the origin of the tibmen object is 2 centimeters below the

origin of the femur since the Y-axis is vertical. Remark that for the femur no

parameter have been specified. Therefore, they are all initialized to null values.

The initial motion parameter specifies that the rigid body tibmen will initially

approach the femur along the vertical axis at a rate of 5 millimeter per modeling

 103

step. The orientation parameter gives the orientation of the rigid body tibmen by

specifying the angle of rotation around the X, Y, and Z-axis.

The keyword SHIFT_MODEL and ORIENTATION_MODEL allow creating

several view of the scene and the values are identifying the view number, the

shifting of this view in meters along the three axes, and the orientation of the

object. This allows perceiving complex modeling processes more clearly. The

DISPLAY and ZOOM keyword are used to setup the display area and setup the

scaling of the object.

The CONTACT_RESOLUTION (i.e. 0.1 mm) setup the modeling resolution in

translation as well as the contact resolution employed in the algorithm. The

modeling resolution, one millimeter here, is used as modeling step for the

translation after the solids touch for the first time. The orientation resolution and

modeling step are not specified here but are set by default to 0.1 degree and one

degree.

The ANGLE_RANGE lines are used to setup the rotation increments to apply on

the moving rigid body (i.e. the tibmen) after each new stable position and

orientation has been found. These lines specify that the flexion angle will be

changed from 0 to 90 degrees, and for each of these angles the varus/valgus will

be spanned from �15 to 15 degrees. The coding of 0 as the flexion and 1 as the

varus/valgus is done internally in the program.

The rendering type can be set to smooth shaded or wireframe by using the

keyword RENDER followed by the values fill or wire. The smoothing of the model

 104

depends on the correct specification of the normals. The axes of the frame of

reference as well as the normal can be displayed when the modeling program is

running by setting macros in the code. The rendering can be turned off to

increase the modeling speed, or only the stable motion steps can be shown as

they are computed.

 105

AAPPPPEENNDDIIXX CC

RREENNDDEERRIINNGG TTYYPPEESS

 106

We shall describe here the different ways to visualize a 3D model selected by the

current rendering mode. There exist two types of model: polygon-based and

NURB-based. Polygon-based stands for a type of model described discretely as

a list of polygons described themselves as a list of vertices. NURB-based models

are described continuously by bicubic B-spline patches deformed by control

vertices. Current rendering hardware transform at rendering time each patches of

a NURB model into polygons meshes approximating the surface within a given

tolerance.

Given that all the models are described as polygons at rendering time, there are

several ways to visualize them. Wireframe rendering is a mode allowing fast

computation because only the sides of the polygons are traced. It also allows

seeing the geometry underlying the model. A variant of this mode is the hidden

line mode where the polygon that are supposed to be hidden by other in front of

them are not rendered, giving more depth to the model. Another rendering mode

is filled, where each polygon is colored by a user given color. This mode does not

give any depth impression because the color of the surface is not changing

according to the environment. In order to give a depth impression due to lighting

conditions, one must use shading.

Shading uses the incoming light, the material property of the object, as well as

the orientation of the current face to compute the color of each pixel. The

rendering hardware is typically dividing each polygon into triangles to perform

this operation. Then, the color of each of the three vertices of the triangle are

computed using a shading algorithm using the incoming light, the material

 107

property, and the normal at each vertex, giving the orientation of the surface.

Each triangle is painted using a trilinear interpolation of the color of the three

vertices of the triangle to find out the color of each pixel. While the geometry is

discrete because it is described as polygons, this method gives the impression of

a smooth surface because trilinear interpolation is used. There exist several

shading algorithms that can be used according the type of surface to simulate;

Gouraud, Blint, and Phong are examples. Phong is usually available in OpenGL.

Each type of shading is more or less adapted to the lighting conditions and

material of the model rendered.

A last improvement that one can add to a shaded model is texture. Texture

allows showing default and variability of the attribute of a surface in a realistic

way without having to compute new attributes at every pixel. An original texture

image is employed and is tilled on the model by the hardware. The filtering of the

texture due to its deformation is done in hardware. For more details on the types

of rendering, the reader should refer to the book by Foley & Van Dam (Foley,

91).

 108

AAPPPPEENNDDIIXX DD

TTRRAANNSSFFOORRMMAATTIIOONN MMAATTRRIICCEESS

 109

The transformations used in section 8.5 are homogeneous transformations.

Homogeneous transformation includes additional parameters allowing to

manipulate rotation and translation matrices together to perform the following

operation:

Where X is the 1x3 column-vector locating a vertex to transform and X� is the

resulting vertex after transformation. R is the 3x3 matrix representing the

rotations to perform on the vertex around X, Y and Z, and T is the 1x3 translation

vector added to the vertex transformed by the rotations. To encode successive

translations and rotations as well as other transformation, the hardware

transforms the translation and rotation matrix into a single 4x4 homogeneous

transformation matrix M:

TRPP +=′

�
�
�
�

�

�

�
�
�
�

�

�

=

1000
333231

232221

131211

Z

Y

X

TRRR
TRRR
TRRR

M

 110

By using such a general representation for the matrix, successive homogeneous

transformations can be combined into a single homogeneous matrix by

multiplying them. Further, the transformation of a vertex is done by multiplying

the resulting matrix by the vector representing the vertex expressed in

homogeneous coordinates:

and the first operation can then by simplified as:

�
�
�
�

�

�

�
�
�
�

�

�

=

1
Z

Y

X

P
P
P

P

MPP =′

 111

LLIISSTT OOFF RREEFFEERREENNCCEESS

Ateshian GA (1993) "B-spline least-square surface fitting for articular surface of

diathroidal joints", J Biomech Eng 115(4), 366-373.

Azuma R (1995) "Predictive tracking for Augmented Reality", PhD Dissertation,

UNC-CH, TR95-07.

Baillot Y (1999) "Algorithm to find the stable position and orientation of two rigid

bodies". US patent filed.

Baillot Y (1999) "Study on spherical tracking probes design", CREOL/UCF,

Technical Report 99-01, December 1998

Baillot Y, Rolland JP & Wright DL (1999) "Automatic Modeling of knee-joint

motion for the Virtual Reality Dynamic Anatomy Tool (VRDA) ", Proceedings of

Medicine Meets Virtual Reality 99, IOS Press

Bajura M and Neumann U (1995) "Dynamic registration correction in video-based

augmented reality systems", Proc of the IEEE VRAIS'95, 189-196.

Blankevoort L, Huiskes R and Lange A de, (1990) "Helical axes of passive knee

joint motions", J Biomech 23, 1219-1229.

 112

Blankevoort L, Huiskes R, Lange A de (1988) "The envelope of passive knee

joint motion", J Biomech 21, 705-720.

Blankevoort L, Kuiper JH, Huiskes R and Grootenboer HJ (1991) "Articular

contact in a three-dimensional model of the knee", J Biomech 24(11), 1019-

1031.

Bylski-Austrow DI, Ciarelli MJ, Kayner DC, Mattews LS, and Goldstein SA (1994)

"Displacemens of the menisci under joint load: an in-vitro study of human

knees", J Biomechanics, 27 (4), 421-431

Conlay MD and Long GL (1994) "ligament forces, condyle reactions, line

geometry, screw theory and human knee stability", Advances in

Bioengineering American Society of Mechanical Engineers, Bioengineering

Division (publication) BED 28, AMSE, New York, NY, USA, 169-170.

Davis, L., Rolland, J.P., & Baillot, Y. (1998) "Probe design for Tracking Based on

LED imaging", CREOL/UCF, Technical Report 98-03

Delp SL and Loan JP (1995) "A graphics-based software system to develop and

analyze models of musculoskeletal structures", Comput Biol Med 25(1), 21-34.

Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL and Rosen JM (1990) "An

interactive graphics-based model of the lower extremity to study orthopaedic

surgical procedures", IEEE Transactions on biomedical eng, 37(8), 757.

 113

Foley J, van Dam A, Feiner S, and Hugues J (1991) �Computer Graphics,

principle and practice�, second edition, Addison Wesley Edition.

Frankel VH (1997) Personnal communications.

Garg A and Walker PS (1990) "Prediction of total knee motion using a three-

dimensional computer-graphics model", J Biomech 23(1) 45-58.

Gottschalk S (1996) �OBB Tree: A hierachical structure for Rapid Interference

detection�, Proc. of ACM Siggraph'96.

Hefzy M and Grood E (1996) "Review of knee models: 1996 update", App. Mech.

Rev 41, 1-13.

Holloway R (1995) Registration errors in augmented reality systems, PhD

dissertation, University of North Carolina at Chapel Hill. TR95-016.

Huiskes R and Blankevoort L (1990) "The relationship between knee joint motion

and articular surface geometry", Biomechanics of Diarthrodial Joints, Springer-

Verlag, NY, II, 269-286.

Huiskes R, Kremers J, Lange A de, Woltring HJ, Selvik G and Rens Th JG van

(1985) "Analytical stereophotogrammetric determination of the three-

dimensional knee-joint geometry", J Biomech 18, 559-570.

Janin AL, Mizell DW and Caudell TP (1993) "Calibration of a head-mounted

display for augmented reality applications", Proc of the IEEE VRAIS'93, 246-

255.

 114

Kuiper JH (1988) "Modeling of articular contact in a mathematical knee model",

M Sc Thesis, University of Twente, Enshede, The Netherlands.

Kurosawa H, Walker PS, Abe S, Garg A and Hunter T (1985) "geometry and

motion of the knee for implant and orthotic design", J Biomech 18, 487-499.

Loch DA, Luo Z, Lewis JL and Stewart NJ (1992) "A theoretical model of the

knee and ACL: Theory and experimental verification", J Biomech 25(1), 81-90.

Minami M, Yoshikawa K, Matsuoka Y, Itai Y, Takashi Kokubo T, and Iio M (1991)

"MR study of normal joint function using a low field strength system", J

Computer Assisted Tomography 15(6), 1017-1023

Nisell R (1985) "Mechanics of the knee, a study of joint and muscle load with

clinical applications", Acta Orthop Scand, 56 (216).

Nordin M and Frankel VH (1980) "Basic Biomechanics of the Skeletal System",

Lea and Febiger, Philadelphia, Chap 4.

Northern Digital (1992) "Accuracy of digitizing probes", Technical report #3.

Ounpuu S, Gage JR, Davis RB (1991) "Three dimensional lower extremity joint

kinetics in normal pediatric gait", J. Pediat Orthop. 11, 341-349.

Ponamgi M, Manocha D and Lin M (1995) "Incremental algorithms for collision

detection between general solid models", Proc of ACM/Siggraph Symposium

on Solid Modeling, 293-304

 115

Rehder U (1983) "Morphometrical studies on the symmetry of the human knee

joint: femoral condyles", J Biomech 16, 351-361.

Rolland JP, Wright DL, and Kancherla AR (1997) �Towards a novel augmented-

reality tool to visualize dynamic 3-D anatomy�, Proceedings of the Medicine

Meets Virtual Reality: 5.

Rolland, J.P., Baillot, Y., Davis, L., Vaissie, L., & Wright, D.L. (1998) "Role of

optics in virtual environments", Invited Proceeding of the International Lens

Design Conference

Rolland, J.P., Baillot, Y., & Goon, A.A. (1999) "A Survey of tracking technology

for virtual environments", book chapter in Augmented Reality Wearable

Computer, Edition Bardfield and Caude l, Mahwah NJ

Seedhom BB, Longton EB, Wright V and Dowson D (1972) "Dimensions of the

knee; Radiographic and autopsy study of sizes required for a knee prosthesis",

Ann Rheum Dis 31, 54.

Shiavi R, Limbird T, Frazer M, Stivers K, Strauss A and Abramovitz J (1987)

"Helical motion analysis of the knee-I. Methodology for studying kinematics

during locomotion", J Biomech 20(5), 1987, 459-469.

Shiavi R, Limbird T, Frazer M, Stivers K, Strauss A and Abramovitz J (1987)

"Helical motion analysis of the knee II. Kinematics of uninjured and injured

knees during walking and pivoting", J Biomech 20(7), 653-665.

 116

Soudan K, Van Audekercke R and Martens M (1979) "Methods, difficulties and

inaccuracies in the study of human joint kinematics and pathokinematics by

the instant axis concept. Example: the knee joint", J Biomech 12, 27-33.

Thompson WO, Thaete FL, Fu FH, and Dye SF (1991) "Tibial meniscal dynamics

using three-dimensional recontruction of magnetic resonance images", The

American Journal of Sports Medicine, 19 (3), 210-216

Vaissie L and Rolland JP (1998) "Analysis of Eyepoint Locations and Accuracy of

Rendered Depth in Binocular Head-mounted Displays", CREOL/UCF,

Technical Report 98-01.

Walker PS, Rovick JS, Roberston DD and Schrtager RJ (1988) "The effects of

knee brace hinge design and placement on joint mechanics", J Biomech 21,

965.

Welch G and Bishop G (1997) "SCAAT: Incremental Tracking with Incomplete

Information," SIGGRAPH 97 Proceedings

Wismans J, Veldpaus F, Janseen J, Huson A and Struben P (1980) "A three -

dimensional mathematical model of the knee-joint", J Biomech 13, 677-685.

Wright DL, Rolland JP, and Kancherla AR (1995) "Using virtual reality to teach

radiographic positioning", Radiologic Technology, 66(4), 233-238

Yamaguchi GT and Zajac FE (1989) "A planar model of the knee joint to

characterize the knee extensor mechanism", J Biomech 22(1), 1-10.

