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Conversion efficiency of the nonlinear optical processes; 

focused beams, pulsed beams; advantages of the 

waveguides.  

Lecture 10
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Plane waves vs focused beams

So far we have treated nonlinear optical interactions in the approximation of infinite plane 
waves (no 𝑋𝑌 dependence). 

However, in practice, the incident radiation is usually focused into the nonlinear optical 
medium in order to increase its intensity and hence to increase the efficiency of the 
nonlinear optical process. 

This Lecture explores the nature of nonlinear optical interactions that are excited by focused 
laser beams.
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Plane waves vs focused beams: SHG example
In Lecture 6, we derived (for low conversion limit) phase-matched SHG intensity  

𝐸 (2𝜔)
𝐸 (𝜔)

NLO crystal

d  – effective NLO coefficient

In practice, we are interested in power conversion efficiency or 
energy conversion efficiency.  

𝐼!" =
2𝜔!

𝜖#𝑐$
(
𝑑!

𝑛$)	𝐼"
!𝐿!	SH intensity 

-grows quadratically with distance
-grows quadratically with 𝐼!

(6.10a)

SHG conversion efficiency 
(plane-wave limit) 𝜂!" = 𝐼!"/𝐼" =

!""

%#&$
('

"

($)𝐼"	𝐿
! (6.10b)
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Plane waves vs focused beams: SHG example

Imagine, we have a beam with the average power 𝑃! 
How much power 𝑃"! at the second harmonic we can get?

Assume we have a top-hat beam at 𝜔 with the area 𝐴.  And ignore diffraction, so that the generated beam 
at 2𝜔	 has the same area (and shape) – the so called near-field approximation.

𝐴	 − 𝑎𝑟𝑒𝑎

𝐼! = 𝑃!/𝐴Intensity (power density) at 𝜔

Hence focusing (smaller area 𝐴) increases conversion efficiency!

(10.1)𝑃"! = 𝐼"!𝐴 =
2𝜔"

𝜖#𝑐$
𝑑"

𝑛$ 𝐼!"𝐿"𝐴 =
2𝜔"

𝜖#𝑐$
𝑑"

𝑛$ (
𝑃!
𝐴 )

"𝐿"𝐴 =
2𝜔"

𝜖#𝑐$
𝑑"

𝑛$
𝑃!"

𝐴 𝐿"

L

𝜂"!
%&'() = 𝑃"!/𝑃! =

2𝜔"

𝜖#𝑐$
𝑑"

𝑛$
𝑃!
𝐴 𝐿" =

2𝜔"

𝜖#𝑐$
𝑑"

𝑛$
𝑃!
𝐴 𝐿" (10.2)
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Plane waves vs focused beams: SHG example
Rewrite the formula for conversion efficiency and include the phase matching factor :

𝜂!"
#$%&' =

2𝜔!

𝜀(𝑐)
𝑑!

𝑛) 𝐼"	𝐿!	 𝑠𝑖𝑛𝑐2
∆𝑘𝐿
2

(10.2b)

NLO figure of merit 
(FOM)

L2 dependence

power density

just fundam. 
constants

inceases with 
frequency squared

Power 
conversion 
efficiency

phase matching factor, 
unity at  ∆𝑘 = 0.

This result holds in the plane-wave top-hat beam



6

Focused beams: SFG example

𝜂*+, =
𝐼",
𝐼"-

=
2𝜔)!

𝜀(𝑐)
𝑑!

𝑛) 𝐼". 	𝐿
!	 𝑠𝑖𝑛𝑐2

∆𝑘𝐿
2

(10.3)

NLO figure of merit 
(FOM)

L2 dependence

‘pump’ power 
density at 𝜔! 

just constants

𝜔"! here

SFG power 
(intensity) 
conversion 
efficiency 
(low limit), 
𝜔! →	𝜔" 

This result holds in the plane-wave top-hat beam

Repeat the same formalism, but start from SFG equations for a plane wave (Lecture 6).

Asume no absorption, and that the ‘pump’ field at 𝜔" is strong : 𝑬𝟐 ≫ 𝑬𝟐	&	𝑬𝟑
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Gaussian beams 
The beams are usually focussed into the nonlinear crystal to maximize the conversion efficiency. 
The waves generated by laser sources have a Gaussian amplitude profile with electric field beam 
radius 𝑤.

The Gaussian electric field in complex notation is given by: 

the Gouy phase
R, radius of curvature

near field 𝑧 << 𝑧𝑅

𝐼	~	𝑒012$/4%$𝐸	~	𝑒02$/4%$ ,

beam waist length
(focal length b)

𝑏 = 2𝑍# =
2𝜋𝑤$!

𝜆
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Gaussian beams

The total power in the Gaussian beam is:

𝑃 = 𝐼5)
5

6
2𝜋𝑟𝑑𝑟	𝑒012$/4%$ =

𝜋𝑤51

2 	 𝐼5	
on-axis intensity

efective area 
of the 
Gaussian 
beam 𝐴#$$

So if we know the power, we know the peak intensity (power density) 

𝐼789= 𝑃/	𝐴:;;
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Gaussian beams, SHG 
Let us now calculate SHG power conversion efficiency for Gaussian beams in the near field.

Need to integrate over XY plane

XY

𝑃!" = =
#

*
	𝐼!" 𝑟 𝑑!𝑟	 = =

#

*
	𝐼!" 𝑟 (2𝜋𝑟𝑑𝑟) =

2𝜔!

𝜀#𝑐$
𝑑!

𝑛$ 	𝐿!=
#

*
𝐼" 𝑟 ! 2𝜋𝑟𝑑𝑟 =

=
2𝜔!

𝜀#𝑐$
𝑑!

𝑛$
	𝐿!=

#

*
𝐼#!	𝑒+,-

"//#"(2𝜋𝑟𝑑𝑟) =
2𝜔!

𝜀#𝑐$
𝑑!

𝑛$
	𝐿! 𝐼#!

𝜋𝑤#!

4
=
2𝜔!

𝜀#𝑐$
𝑑!

𝑛$
	𝐿! 𝐼#

1
2
(
𝜋𝑤#!

2
𝐼#)

𝑃!" = 𝑃"
""

0#&$
'"

($
	𝐿! 𝐼# =

""

0#&$
'"

($
	 2&"

3'((
 𝐿!

This %! represents averaging in two spatial coordinates for the Gaussian shape

Each coordinate gives %! reduction 

(10.4a)

We will see later that time-domain Gaussian shape gives another %! reduction 

𝐴"## =
𝜋𝑤$%

2

Start from: 𝐼%& =
2𝜔%

𝜖'𝑐"
(
𝑑%

𝑛")	𝐼&
%𝐿%	 (6.10a)

pump power 𝑃! 

𝜂"!
%&'() = 𝑃"!/𝑃! =

𝜔"

𝜖#𝑐$
𝑑"

𝑛$
𝑃!
𝐴(99

𝐿" (10.4b)

Gaussian 
beams
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Gaussian beams, SHG 

Note that compression of the second 
harmonic signal occurs in space:

𝑒!"#!/%"! 𝑒!&#!/%"!à

beamsize reduces by 2

ω

2ω

2𝜔𝜔
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Gaussian beams, SHG,  numerical examples

Real example

KDP crystal

𝜆𝜔 = 1.06	µ𝑚,  𝜔=1.78e15 s-1

𝜖'=8.85e-12 F/m
𝑐 = 3𝑒8	𝑚/𝑠
𝑑36 = 0.4	𝑝𝑚/𝑉,	

𝑜𝑜𝑒 phase matching, deff=d36sinθsin2φ 
for SHG 1.06->0.53 µm, θ=41º, φ=45º, 
deff= 0.26 pm/V= 0.26e-12  m/V
n=1.5;
L=1 cm (1e-2 m)
w0=1 mm (Gauss),   Aeff	 =

)*&'

%
=	 1.57e-6 m2

𝑃&=1 W

𝑃!"= 1.78e15^2/8.85e-12/3e8^3 * (0.26e-12^2/1.5^3)  *1e-2^2/1.57e-6 *1^2= 

= 17e-9 W = 17 nW

𝜂!" =1.7e-8 ~ 10-8

Power conversion efficiency

𝑃"! =
𝜔"

𝜀#𝑐$
𝑑"

𝑛$ 𝐿"
	 𝑃!"

𝐴(99
(10.4a)
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Gaussian beams, SHG, numerical examples 

Real example

PPLN crystal

𝜆𝜔 = 1.06	µ𝑚,  𝜔=1.78e15 s-1

𝜖'=8.85e-12 F/m
c=3e8 m/s

d33=28 pm/V,  
𝑒𝑒𝑒 quasi phase matching, 
deff=

%
)d33 =18 pm/V=18e-12 m/V

n=2.14;
L=5 cm (5e-2 m)
w0=90 µm (Gauss),  Aeff =

)*&'

% =1.27e-8 m2

𝑃&=1 W

𝑃!"= 1.78e15^2/8.85e-12/3e8^3 *(18e-12^2/2.14^3)  *5e-2^2/1.27e-8  *1^2 = 

= 0.086 W = 86 mW

𝜂!" ~ 0.1
Power conversion efficiency

𝑃"! =
𝜔"

𝜀#𝑐$
𝑑"

𝑛$
𝐿"

𝐴(99
	 𝑃!" (10.4)
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Gaussian beams, SHG 

𝐼	~	𝑒012$/4%$

How tightly can we focus the beam ?

From (10.4) it follows that SHG conversion 
efficiency (at a fixed pump power 𝑃!) scales as 𝜂!"~	𝐿!/𝑤(!

Focusing improves SHG efficiency as ~	1/𝑤#"  till you reach the so 
called confocal limit when the waist 𝑤# becomes so smal that the 
Rayleigh length becomes 𝑧: < 𝐿/2  

The beam intensity does not stay constant over the length of the crystal 

The effective length becomes less than L:  𝐿(99 ~	2𝑧:~2𝜋𝑤#"/(𝜆/𝑛)

𝜂1E~	𝐿1/𝑤51~𝐿:;;1 /𝑤51~(2𝑧F)1/𝑤51~
4%C

4%$
~	 𝑤51	Hence

- starts declining at strong focusing 𝑤# → 0

Rayleigh length 𝑧: =
;'+,

(=/?)

Gaussian beam

𝑏 = 2𝑧#	- focal length
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Gaussian beams, SHG 

E(2𝜔)E(𝜔)
NLO crystal

Very tight focusing is not a good idea:

1. Lower efficiency
2. Possibility of crystal damage in the focus
3. Poor phase matching
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Gaussian beams, SHG 

L

NL crystal

Good approximation: confocal focusing, such that: 

𝐿 =𝑏 = 2𝑧F = 2𝜋𝑤51/(𝜆/𝑛)
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Gaussian beams, SHG optimal focusing after Boyd-Kleinman 

𝜉 = 𝐿/2𝑧F

At a fixed L, 𝜉 
increases with 
the focusing 
strength as 1/𝑤#"

SHG efficiency 
in some relative  

units

confocal focusing
𝐿 =	2𝑧(	condition 

(𝜉 = 1) 
Still a vey good 

approxiamtion – get 
75% of max

- focusing strength

max at 
 𝜉 = 2.84 

slope 1 
here 

10-2
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Gaussian beams, SHG 

Note that for the optimized conditions the second harmonic 
power is proportional to the sample length L, not L2 .

𝐿 =	2𝑧F =
1G4%$

H/I ~𝑤51

𝜂1E~	𝐿1/𝑤51~	𝐿1/𝐿~𝐿

optimized focusing

𝑤51~𝐿à
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Gaussian beams, SFG 

SFG analysis for Gausian beams is 
pretty similar to that of SHG, if the 
frequencies 𝜔3and 𝜔4 are not far from 
each other
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NLO processes in waveguides 

On the contary, in waveguides, the beam size is no longer limited by diffraction and is kept at a very 
small size (few µm) over the whole length of the crystal. 

NLO conversion efficiency in waveguides can be more than 100 times higher than in bulk 
 

𝜂!"#~	𝐿$
waveguide



20

SHG with pulsed radiation 

CW avearge power level𝜔

CW2𝜔

4x
avearge power 
level at 2𝜔
inceases 2x

pulsed fundamental

2x
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SHG with pulsed radiation 

CW avearge power level
𝜔

pulsed fundamental

𝜏

It is clear that at the same average power level, the SH output (and conversion efficiency) will scale 
as T/𝜏 - the inverse ‘duty factor’.

T

CW avearge power level
𝜔

Gaussian-shape pulses 

𝜏

T

𝐼	~𝐼(	𝑒-!.
./0.
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SHG, pulsed radiation Gaussian shape 
𝐼	~	𝐼#𝑒+!4

"/5"𝐸	~	𝐸#𝑒+4
"/5"

=
1
2

Gaussian in time:

𝑃"(𝑡)~	𝑃#𝑒+!4
"/5"

à t

on-axis field          on-axis intensity  

For pulsed radiation we are interested in energy conversion efficiency
Need to integrate power over time

ℰ!" = ∫+*
* 	𝑃!" 𝑡 𝑑𝑡	 = ""

0#&$
'"

($
6"

3'((
∫+*
*  𝑃"!𝑑𝑡	 =

""

0#&$
'"

($
6"

3'((
∫+*
*  𝑃#!	𝑒+,4

"/5" 𝑑𝑡	 =

""

0#&$
'"

($
6"

3'((
𝑃#! ∫+*

*  𝑒+,4"/5" 𝑑𝑡	 = ""

0#&$
'"

($ 𝐿! 2#
3'((

ℰ"{
∫45
5 	8

467
"

8" '4

∫45
5 	8

4"7
"

8" '4

} = ℰ"
9
!
""

0#&$
'"

($ 	𝐿! 𝐼#

ℰ" = ∫+*
* 	𝑃" 𝑡 𝑑𝑡 =	 ∫+*

* 	𝑃#𝑒+!4
"/5"𝑑𝑡	

power vs time, 𝑃$ - peak power         pulse energy 

ℰ!" = ℰ"
9
!
""

0#&$
'"

($
	𝐿! 𝐼# (10.5)

ℰ!"/ ℰ" = 9
!
""

0#&$
'"

($ 	𝐿! 𝐼# (10.6)Energy conversion 
efficiency 

1
2
1
2

Total reduction coeff. 
compared to plain wave 
(6.10a) because of Gaussian 
shape in space and time 

𝐼' ≈
ℰ&

𝐴#$$𝜏#$$
𝜏"## =

𝜋
2	 𝜏 =

𝜋
4𝑙𝑛2 𝑡)*+, ≈ 1.064	𝑡)*+,


