Lecture 10

Conversion efficiency of the nonlinear optical processes;
focused beams, pulsed beams; advantages of the waveguides.

Plane waves vs focused beams

So far we have treated nonlinear optical interactions in the approximation of infinite plane waves (no $X Y$ dependence).

However, in practice, the incident radiation is usually focused into the nonlinear optical medium in order to increase its intensity and hence to increase the efficiency of the nonlinear optical process.

This Lecture explores the nature of nonlinear optical interactions that are excited by focused laser beams.

Plane waves vs focused beams: SHG example

In Lecture 6, we derived (for low conversion limit) phase-matched SHG intensity

SH intensity
-grows quadratically with distance -grows quadratically with I_{ω}

SHG conversion efficiency
(plane-wave limit)

$$
\begin{equation*}
I_{2 \omega}=\frac{2 \omega^{2}}{\epsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega}^{2} L^{2} \tag{6.10a}
\end{equation*}
$$

$$
\eta_{2 \omega}=I_{2 \omega} / I_{\omega}=\frac{2 \omega^{2}}{\epsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega} L^{2}
$$

$$
d \text { - effective NLO coefficient }
$$

In practice, we are interested in power conversion efficiency or energy conversion efficiency.

Plane waves vs focused beams: SHG example

Imagine, we have a beam with the average power P_{ω} How much power $P_{2 \omega}$ at the second harmonic we can get?

Assume we have a top-hat beam at ω with the area A. And ignore diffraction, so that the generated beam at 2ω has the same area (and shape) - the so called near-field approximation.

Intensity (power density) at ω

$$
I_{\omega}=P_{\omega} / A
$$

$$
\begin{align*}
& P_{2 \omega}=I_{2 \omega} A=\frac{2 \omega^{2}}{\epsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega}{ }^{2} L^{2} A=\frac{2 \omega^{2}}{\epsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right)\left(\frac{P_{\omega}}{A}\right)^{2} L^{2} A=\frac{2 \omega^{2}}{\epsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) \frac{P_{\omega}^{2}}{A} L^{2} \tag{10.1}\\
& \eta_{2 \omega}^{\text {power }}=P_{2 \omega} / P_{\omega}=\frac{2 \omega^{2}}{\epsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) \frac{P_{\omega}}{A} L^{2}=\frac{2 \omega^{2}}{\epsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) \frac{P_{\omega}}{A} L^{2} \tag{10.2}
\end{align*}
$$

Plane waves vs focused beams: SHG example

Rewrite the formula for conversion efficiency and include the phase matching factor :
inceases with
frequency squared
phase matching factor,
unity at $\Delta k=0$
conversion efficiency
$\Rightarrow \eta_{2 \omega}^{\text {power }}=\frac{2 \omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega} L^{2} \operatorname{sinc}^{2}\left(\frac{\Delta k L}{2}\right)$
L^{2} dependence

NLO figure of merit (FOM)

This result holds in the plane-wave top-hat beam

Focused beams: SFG example

Repeat the same formalism, but start from SFG equations for a plane wave (Lecture 6).
Asume no absorption, and that the 'pump' field at ω_{2} is strong: $\boldsymbol{E}_{\mathbf{2}} \gg \boldsymbol{E}_{\mathbf{2}} \& \boldsymbol{E}_{\mathbf{3}}$

ω_{3}^{2} here

$$
\begin{gather*}
\begin{array}{c}
\text { SFG power } \\
\text { (intensity) } \\
\text { conversion } \\
\text { efficiency } \\
\text { (Iow limit), } \\
\omega_{1} \rightarrow \omega_{3}
\end{array}
\end{gather*} \longrightarrow \eta_{S F G}=\frac{I_{\omega_{3}}}{I_{\omega_{1}}}=\frac{2 \omega_{3}^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega_{2}} L^{2} \operatorname{sinc}^{2}\left(\frac{\Delta k L}{2}\right)
$$

This result holds in the plane-wave top-hat beam

Gaussian beams

The beams are usually focussed into the nonlinear crystal to maximize the conversion efficiency. The waves generated by laser sources have a Gaussian amplitude profile with electric field beam radius w.

The Gaussian electric field in complex notation is given by:
$\mathbf{E}(r, z)=E_{0} \hat{x} \frac{w_{0}}{w(z)} \exp \left(\frac{-r^{2}}{w(z)^{2}}\right) \exp \left(-i\left(k z+k \frac{r^{2}}{2 R(z)}-\psi(z)\right)\right)$

beam waist length (focal length b)

$$
b=2 Z_{R}=\frac{2 \pi w_{0}^{2}}{\lambda}
$$

$$
E \sim e^{-r^{2} / w_{0}^{2}}, \quad I \sim e^{-2 r^{2} / w_{0}^{2}}
$$

Gaussian beams

The total power in the Gaussian beam is:

$$
\begin{gathered}
P=I_{0} \int_{0}^{\infty} 2 \pi r d r e^{-2 r^{2} / w_{0}^{2}}=\frac{\pi w_{0}^{2}}{2} I_{0} \\
\begin{array}{l}
\text { ofective area } \\
\text { of the } \\
\text { beaussian } A_{e f f} \\
\text { beam }
\end{array} \\
I_{\text {max }}=P / A_{e f f}
\end{gathered}
$$

So if we know the power, we know the peak intensity (power density)

Gaussian beams, SHG

Let us now calculate SHG power conversion efficiency for Gaussian beams in the near field.
Need to integrate over XY plane
Start from:

$$
\begin{equation*}
I_{2 \omega}=\frac{2 \omega^{2}}{\epsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega}{ }^{2} L^{2} \tag{6.10a}
\end{equation*}
$$

$$
\begin{aligned}
& P_{2 \omega}=\int_{0}^{\infty} I_{2 \omega}(r) d^{2} r=\int_{0}^{\infty} I_{2 \omega}(r)(2 \pi r d r)=\frac{2 \omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} \int_{0}^{\infty} I_{\omega}(r)^{2}(2 \pi r d r)= \\
& =\frac{2 \omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} \int_{0}^{\infty} I_{0}{ }^{2} e^{-4 r^{2} / w_{0}^{2}}(2 \pi r d r)=\frac{2 \omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} I_{0}{ }^{2} \frac{\pi w_{0}^{2}}{4}=\frac{2 \omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} I_{0}(\underbrace{\frac{1}{2}}_{\text {pump power }}\left(\frac{\pi w_{0}^{2}}{2} I_{0}\right)
\end{aligned}
$$

pump power P_{ω}

Gaussian beams

$$
\begin{equation*}
P_{2 \omega}=P_{\omega} \frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} I_{0}=\frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) \frac{P_{\omega}^{2}}{A_{e f f}} L^{2} \tag{10.4a}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{2 \omega}^{\text {power }}=P_{2 \omega} / P_{\omega}=\frac{\omega^{2}}{\epsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) \frac{P_{\omega}}{A_{e f f}} L^{2} \tag{10.4b}
\end{equation*}
$$

$$
A_{e f f}=\frac{\pi w_{0}^{2}}{2}
$$

This $\frac{1}{2}$ represents averaging in two spatial coordinates for the Gaussian shape Each coordinate gives $\frac{1}{\sqrt{2}}$ reduction
We will see later that time-domain Gaussian shape gives another $\frac{1}{\sqrt{2}}$ reduction

Gaussian beams, SHG

Note that compression of the second harmonic signal occurs in space:

$$
\begin{array}{ccc}
\omega & & 2 \omega \\
e^{-2 r^{2} / w_{0}^{2}} & \rightarrow & e^{-4 r^{2} / w_{0}^{2}}
\end{array}
$$

beamsize reduces by $\sqrt{2}$

Gaussian beams, SHG, numerical examples

Real example

KDP crystal

$\lambda_{\omega}=1.06 \mu m, \omega=1.78 \mathrm{e} 15 \mathrm{~s}^{-1}$
$\epsilon_{0}=8.85 \mathrm{e}-12 \mathrm{~F} / \mathrm{m}$
$c=3 e 8 \mathrm{~m} / \mathrm{s}$
$d_{36}=0.4 \mathrm{pm} / \mathrm{V}$,
ooe phase matching, $\mathrm{d}_{\text {eff }}=\mathrm{d}_{36} \sin \theta \sin 2 \varphi$ for SHG 1.06->0.53 $\mu \mathrm{m}, \theta=41^{\circ}, \varphi=45^{\circ}$,
$\mathrm{d}_{\text {eff }}=0.26 \mathrm{pm} / \mathrm{V}=0.26 \mathrm{e}-12 \mathrm{~m} / \mathrm{V}$
$\mathrm{n}=1.5$;
$L=1 \mathrm{~cm}$ (1e-2 m)
$w_{0}=1 \mathrm{~mm}$ (Gauss), $\quad A_{\text {eff }}=\frac{\pi w_{0}^{2}}{2}=1.57 \mathrm{e}-6 \mathrm{~m}^{2}$
$P_{\omega}=1 \mathrm{~W}$

$$
\begin{gathered}
P_{2 \omega}=1.78 \mathrm{e} 15^{\wedge} 2 / 8.85 \mathrm{e}-12 / 3 \mathrm{e} 8^{\wedge} 3^{*}\left(0.26 \mathrm{e}-12^{\wedge} 2 / 1.5^{\wedge} 3\right) * 1 \mathrm{e}-2^{\wedge} 2 / 1.57 \mathrm{e}-66^{*} 1^{\wedge} 2= \\
\\
=17 \mathrm{e}-9 \mathrm{~W}=17 \mathrm{nW}
\end{gathered}
$$

Power conversion efficiency

$$
\eta_{2 \omega}=1.7 \mathrm{e}-8 \sim 10^{-8}
$$

Gaussian beams, SHG, numerical examples

$$
\begin{equation*}
P_{2 \omega}=\frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) \frac{L^{2}}{A_{e f f}} P_{\omega}^{2} \tag{10.4}
\end{equation*}
$$

Real example

PPLN crystal

$\lambda_{\omega}=1.06 \mu \mathrm{~m}, \omega=1.78 \mathrm{e} 15 \mathrm{~s}^{-1}$
$\epsilon_{0}=8.85 \mathrm{e}-12 \mathrm{~F} / \mathrm{m}$
$c=3 \mathrm{e} 8 \mathrm{~m} / \mathrm{s}$
$d_{33}=28 \mathrm{pm} / \mathrm{V}$,
eee quasi phase matching,
$\mathrm{d}_{\text {eff }}=\frac{2}{\pi} \mathrm{~d}_{33}=18 \mathrm{pm} / \mathrm{V}=18 \mathrm{e}-12 \mathrm{~m} / \mathrm{V}$
$\mathrm{n}=2.14$;
L=5 cm (5e-2 m)
$w_{0}=90 \mu \mathrm{~m}$ (Gauss), $A_{\text {eff }}=\frac{\pi w_{0}^{2}}{2}=1.27 \mathrm{e}-8 \mathrm{~m}^{2}$ $P_{\omega}=1 \mathrm{~W}$

$$
\begin{gathered}
P_{2 \omega}=1.78 \mathrm{e} 15^{\wedge} 2 / 8.85 \mathrm{e}-12 / 3 \mathrm{e} 8^{\wedge} 3 *\left(18 \mathrm{e}-12^{\wedge} 2 / 2.14^{\wedge} 3\right) * 5 \mathrm{e}-2^{\wedge} 2 / 1.27 \mathrm{e}-8 * 1^{\wedge} 2= \\
=0.086 \mathrm{~W}=86 \mathrm{~mW}
\end{gathered}
$$

Power conversion efficiency

$$
\eta_{2 \omega} \sim 0.1
$$

Gaussian beams, SHG

How tightly can we focus the beam?

From (10.4) it follows that SHG conversion efficiency (at a fixed pump power P_{ω}) scales as

$$
\eta_{2 \omega} \sim L^{2} / w_{0}^{2}
$$

$$
\text { Rayleigh length } z_{R}=\frac{\pi w_{0}^{2}}{(\lambda / n)}
$$

Focusing improves SHG efficiency as $\sim 1 / w_{0}^{2}$ till you reach the so called confocal limit when the waist w_{0} becomes so smal that the Rayleigh length becomes $z_{R}<L / 2$

The beam intensity does not stay constant over the length of the crystal
The effective length becomes less than $L: L_{e f f} \sim 2 z_{R} \sim 2 \pi w_{0}^{2} /(\lambda / n)$

Hence

$$
\begin{aligned}
\eta_{2 \omega} \sim & L^{2} / w_{0}^{2} \sim L_{e f f}^{2} / w_{0}^{2} \sim\left(2 z_{R}\right)^{2} / w_{0}^{2} \sim \frac{w_{0}^{4}}{w_{0}^{2}} \sim w_{0}^{2} \\
& \text { - starts declining at strong focusing } w_{0} \rightarrow 0
\end{aligned}
$$

Gaussian beams, SHG

Very tight focusing is not a good idea:

1. Lower efficiency
2. Possibility of crystal damage in the focus
3. Poor phase matching

Gaussian beams, SHG

Good approximation: confocal focusing, such that:

$$
L=b=2 z_{R}=2 \pi w_{0}^{2} /(\lambda / n)
$$

Gaussian beams, SHG optimal focusing after Boyd-Kleinman

At a fixed L, ξ increases with
the focusing
strength as $1 / w_{0}^{2}$
G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian beams," J.

Gaussian beams, SHG

Note that for the optimized conditions the second harmonic power is proportional to the sample length L, not L^{2}.

$$
\begin{gathered}
L=2 z_{R}=\frac{2 \pi w_{0}^{2}}{\lambda / n} \sim w_{0}^{2} \quad \text { optimized focusing } \\
\rightarrow \quad w_{0}^{2} \sim L \\
\eta_{2 \omega} \sim L^{2} / w_{0}^{2} \sim L^{2} / L \sim L
\end{gathered}
$$

Gaussian beams, SFG

SFG analysis for Gausian beams is pretty similar to that of SHG, if the frequencies ω_{1} and ω_{2} are not far from each other

NLO processes in waveguides

$$
\eta_{N L O} \sim L^{2}
$$

On the contary, in waveguides, the beam size is no longer limited by diffraction and is kept at a very small size (few $\mu \mathrm{m}$) over the whole length of the crystal.

NLO conversion efficiency in waveguides can be more than 100 times higher than in bulk

SHG with pulsed radiation

SHG with pulsed radiation

It is clear that at the same average power level, the SH output (and conversion efficiency) will scale as T / τ - the inverse 'duty factor'.
ω

SHG, pulsed radiation Gaussian shape

Gaussian in time:

$$
\underset{\substack{\text { on-axis field }}}{E_{0} e^{-t^{2}} / \tau^{2}} \quad I \sim I_{0} e^{-2 t^{2} / \tau^{2}} \text { on-axis intensity }
$$

$$
P_{\omega}(t) \sim P_{0} e^{-2 t^{2} / \tau^{2}}
$$

power vs time, P_{0} - peak power

$$
\mathcal{E}_{\omega}=\int_{-\infty}^{\infty} P_{\omega}(t) d t=\int_{-\infty}^{\infty} P_{0} e^{-2 t^{2} / \tau^{2}} d t
$$

For pulsed radiation we are interested in energy conversion efficiency
Need to integrate power over time

$$
\begin{aligned}
& \mathcal{E}_{2 \omega}=\int_{-\infty}^{\infty} P_{2 \omega}(t) d t=\frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) \frac{L^{2}}{A_{e f f}} \int_{-\infty}^{\infty} P_{\omega}^{2} d t=\frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) \frac{L^{2}}{A_{e f f}} \int_{-\infty}^{\infty} P_{0}^{2} e^{-4 t^{2} / \tau^{2}} d t= \\
& \frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) \frac{L^{2}}{A_{e f f}} P_{0}^{2} \int_{-\infty}^{\infty} e^{-4 t^{2} / \tau^{2}} d t=\frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} \frac{P_{0}}{A_{e f f}} \varepsilon_{\omega}\left\{\frac{\int_{-\infty}^{\infty} e^{-\frac{4 t^{2}}{\tau^{2}} d t}}{\int_{-\infty}^{\infty} e^{-\frac{2 t^{2}}{\tau^{2}}} d t}=\mathcal{E}_{\omega} \frac{1}{\sqrt{2}} \frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} I_{0}\right.
\end{aligned}
$$

$$
\begin{equation*}
\varepsilon_{2 \omega}=\varepsilon_{\omega} \frac{1}{\sqrt{2}} \frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} I_{0} \tag{10.5}
\end{equation*}
$$

Energy conversion
efficiency

$$
\begin{equation*}
\mathcal{E}_{2 \omega} / \mathcal{E}_{\omega}=\frac{1}{\sqrt{2}} \frac{\omega^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} I_{0} \tag{10.6}
\end{equation*}
$$

Total reduction coeff. compared to plain wave
(6.10a) because of Gaussian
shape in space and time

$$
I_{0} \approx \frac{\mathcal{E}_{\omega}}{A_{e f f} \tau_{e f f}}
$$

$$
\tau_{\text {eff }}=\sqrt{\frac{\pi}{2}} \tau=\sqrt{\frac{\pi}{4 \ln 2}} t_{\text {FWHM }} \approx 1.064 t_{\text {FWHM }}
$$

