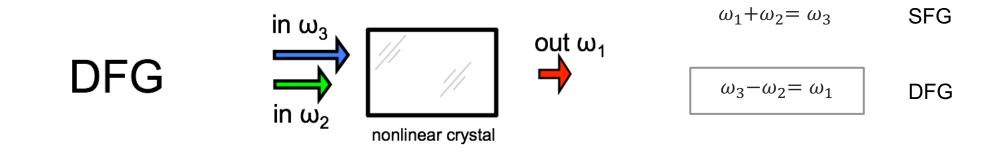
Lecture 11

Difference-frequency generation (DFG).

(frequency down conversion)



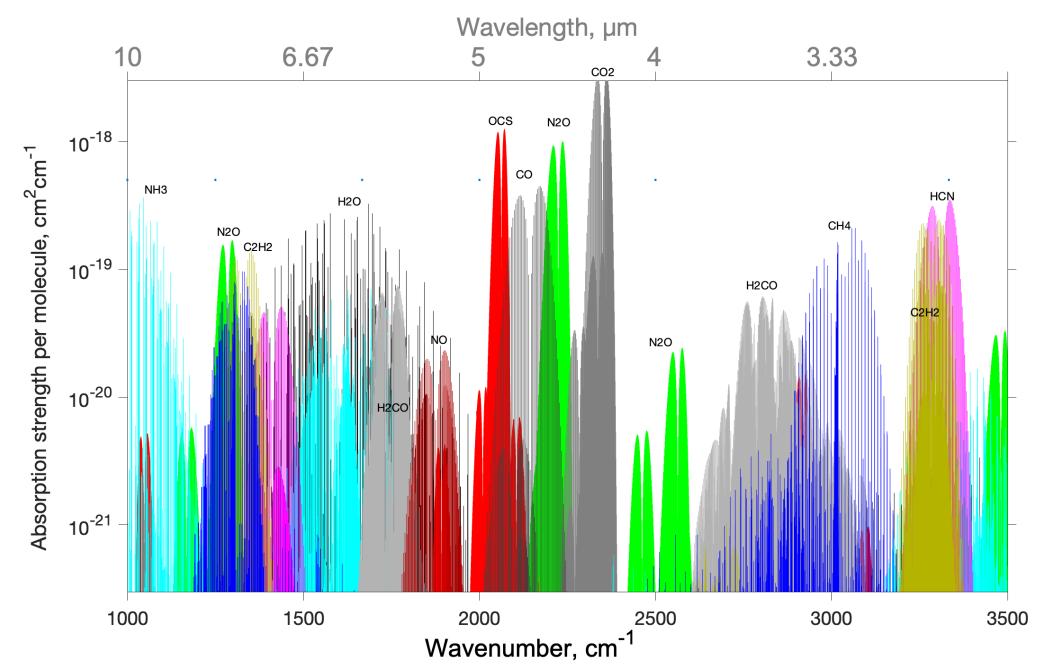
 ω_3 , ω_2 , and ω_1 are the so-called pump, signal and idler waves by definition $\omega_3 > \omega_2 > \omega_1$

For every photon that is created at the difference frequency ω_1 , a photon at the higher input frequency (pump, ω_3) must be destroyed and a photon at the lower input frequency (signal ω_2) must be created. Hence the field at ω_2 is **amplified**.

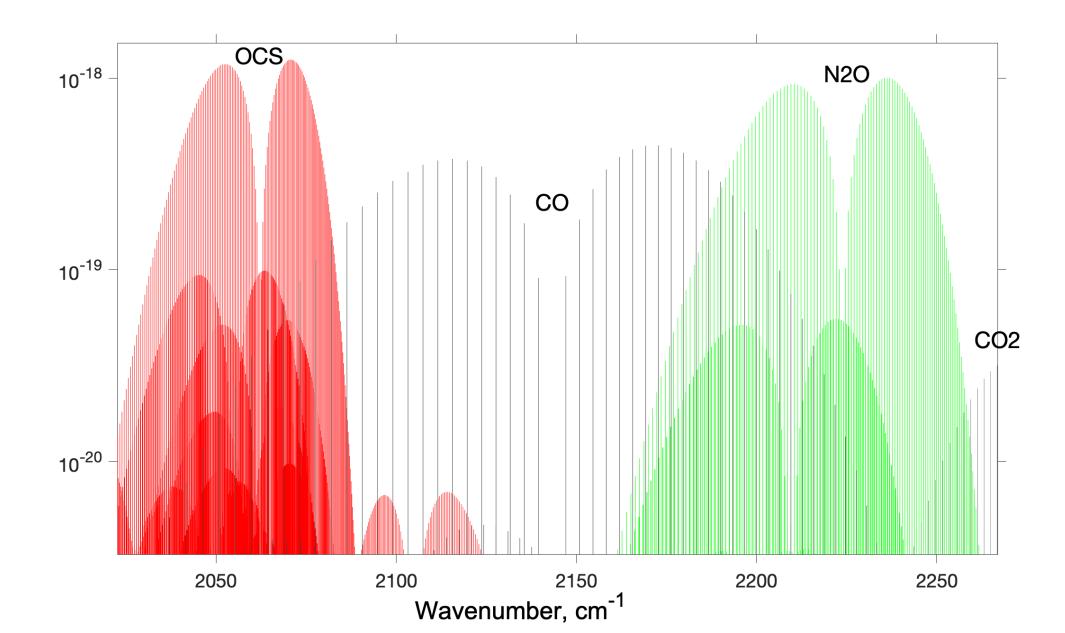
Benefits:

DFG can produce longwave IR beams (ω_1) with readily available room-temperature near-infrared 'pump' (ω_3) and 'signal' (ω_2) laser sources. For example, the outputs of telecom-range narrow-linewidth diode or fiber lasers can be fiber-coupled and mixed in a nonlinear crystal. In addition, coherence properties of the DFG output are inherited from those of the pump lasers. No threshold for this process.

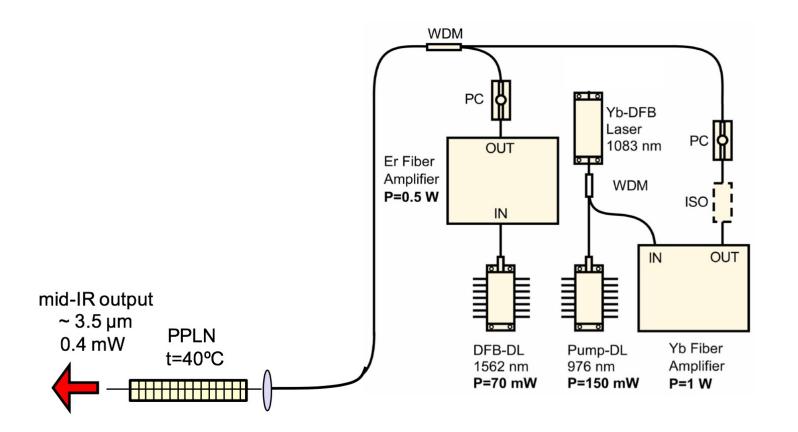
Why mid-infrared?



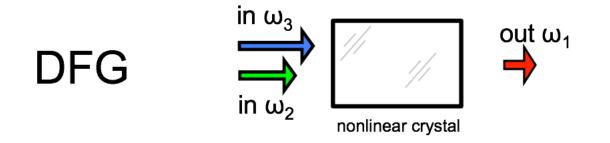
Why mid-infrared?



Difference-Frequency Generation Experimental Setup



Experimental setup for the 3.5-µm DFG source based on mixing the amplified outputs of two DFB lasers in PPLN. DL, diode laser; ISO, optical isolator; PC, polarization controller; WDM, wavelength division multiplexer.



Assume that the ω_3 wave and ω_2 wave are strong waves and are undepleted by the nonlinear interaction, so that we can treat A_3 and A_2 fields as being essentially constant.

We also assume that no field is incident on the medium at frequency ω_1 .

The coupled-amplitude equations describing this interaction are :

Recall coupled-wave equations for the 3 waves (5.7)

$$\frac{dA_1}{dz} = -ig A_3 A_2^* e^{-i\Delta kz}$$
$$\frac{dA_2}{dz} = -ig A_3 A_1^* e^{-i\Delta kz}$$
$$\frac{dA_3}{dz} = -ig A_1 A_2 e^{i\Delta kz}$$

NL coupling coefficient $g = \frac{d}{c} \sqrt{\frac{\omega_1 \omega_2 \omega_3}{n_1 n_2 n_3}}$

For A_3 and A_2 fields \approx constant and $\Delta k=0$:

$$\frac{dA_1}{dz} = -ig A_3 A_2^*$$

after integration

$$A_1 = -ig A_3 A_2^* L$$

– DFG field grows linearly with the length

for the normalized filed intensity $|A_1|^2$

 $|A_1|^2 = g^2 |A_3|^2 |A_2|^2 L^2$

recalling that
$$I_{\omega} = \frac{c\varepsilon_0}{2} \omega |A_{\omega}|^2 \rightarrow |A_{\omega}|^2 = \frac{2I_{\omega}}{c\varepsilon_0 \omega}$$

we get $\frac{2I_{\omega_1}}{c\varepsilon_0 \omega_1} = \frac{d^2}{c^2} \frac{\omega_1 \omega_2 \omega_3}{n_1 n_2 n_3} \frac{2I_{\omega_3}}{c\varepsilon_0 \omega_3} \frac{2I_{\omega_2}}{c\varepsilon_0 \omega_2} L^2$
DFG $I_{\omega_1} = \frac{2\omega_1^2}{\varepsilon_0 c^3} \left(\frac{d^2}{n^3}\right) I_{\omega_3} I_{\omega_2} L^2$ (11.1)
recall SFG from L6: $I_{\omega_3} = \frac{2\omega_3^2}{\varepsilon_0 c^3} \left(\frac{d^2}{n^3}\right) I_{\omega_1} I_{\omega_2} L^2$ (6.3) Looks similar to SFG!

But in experiment, we measure input and output **powers** \rightarrow need to convert to powers

Plane-wave, near-field, top-hat approximation

Imagine, we have two input beams at ω_3 and ω_2 with average powers P_{ω_3} and P_{ω_2}

How much power P_{ω_1} at the difference frequency can we get?

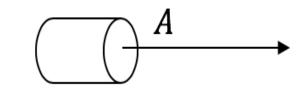
Assume we have top-hat for ω_3 and ω_2 beams, with the area *A*. We ignore diffraction (*L* is small enough), so that the generated beam at ω_1 has the same area (and shape) – a near-field approximation.

Intensity (power density) at ω_3 and ω_2

so that

$$\frac{P_{\omega_1}}{A} = \frac{2\omega_1^2}{\varepsilon_0 c^3} \left(\frac{d^2}{n^3}\right) \frac{P_{\omega_3}}{A} \frac{P_{\omega_2}}{A} L^2$$

$$P_{\omega_1} = \frac{2\omega_1^2}{\varepsilon_0 c^3} \left(\frac{d^2}{n^3}\right) \frac{L^2}{A} P_{\omega_3} P_{\omega_2}$$
(11.2)
NLO figure of merit (FOM)
$$\frac{P_{\omega_1}}{P_{\omega_1}} = \frac{2\omega_1^2}{P_{\omega_2}} \left(\frac{d^2}{n^3}\right) \frac{L^2}{A} P_{\omega_3} P_{\omega_2}$$



$$I_{\omega_2} = P_{\omega_2}/A$$

 $L_{\alpha} = P_{\alpha} / A$

In the limit of small conversion efficiency and perfect phase matching between the interacting waves, the DFG power P_{ω_1} is expressed by the following product:

$$P_{\omega_1} = \eta_{DFG} P_{\omega_3} P_{\omega_2}$$
 Thus, P_{ω_1} is linear with respect to both P_{ω_2} , P_{ω_2}

where

 $\eta_{DFG} = \frac{2\omega_1^2}{\varepsilon_0 c^3} (\frac{d^2}{n^3}) \frac{L^2}{A}$

– is a normalized conversion efficiency in Watts per Watts² or Watt⁻¹ or % per W that depends on the effective nonlinear coefficient (d_{eff}), the output mid-IR frequency (ω_1), focusing strength, and interaction length (*L*).

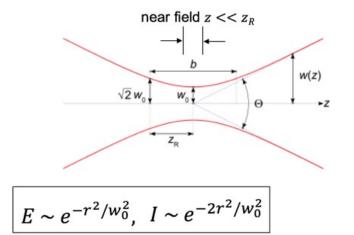
One can also see that the DFG conversion efficiency drastically drops with increasing the mid-IR wavelength due to the $\omega_1^2 \sim 1/\lambda_1^2$ term

Difference-Frequency Generation, Gaussian beams

near field $z \ll z_R$

Let us now calculate (Similar to Lecture 10) DFG **power** conversion efficiency for Gaussian beams in the near-field approximation and low conversin limit.

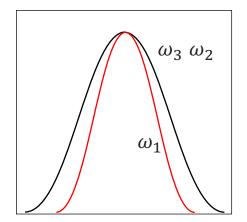
Assume that the ω_3 and ω_2 beams have the same beamsize w_0 (1/e₂ intensity beam radius).



The DFG beam at ω_1 has the beamsize $w_0/\sqrt{2}$

$$I \sim e^{-4r^2/w_0^2}$$

Need to integrate over XY plane.



Difference-Frequency Generation, Gaussian beams

From f-la (11.1):

 $I_{\omega_1 0} = \frac{2\omega_1^2}{\varepsilon_0 c^3} (\frac{d^2}{n^3}) L^2 \times I_{\omega_3 0} I_{\omega_2 0}$ (11.3)

Integrated DFG intensity = power

At the same time (for Gauss):

On-axis (max) DFG intensity

$$P_{\omega_3} = I_{\omega_3 0} \frac{\pi w_0^2}{2} = I_{\omega_3 0} A_{eff}$$
 and $P_{\omega_2} = I_{\omega_2 0} \frac{\pi w_0^2}{2} = I_{\omega_2 0} A_{eff}$

 $P_{\omega_1} = \int I_{\omega_1} dx dy = \int I_{\omega_1 0} e^{-4r^2/w_0^2} 2\pi r dr = I_{\omega_1 0} \frac{\pi w_0^2}{4}$

Thus it follows from (11.3) that

$$\frac{P_{\omega_1}}{A_{eff}/2} = \frac{2\omega_1^2}{\varepsilon_0 c^3} \left(\frac{d^2}{n^3}\right) L^2 \times \frac{P_{\omega_3}}{A_{eff}} \frac{P_{\omega_2}}{A_{eff}}$$

and finally

y

$$P_{\omega_{1}} = \frac{2\omega_{1}^{2}}{\varepsilon_{0}c^{3}} (\frac{d^{2}}{n^{3}}) \frac{1}{2} \frac{L^{2}}{A_{eff}} P_{\omega_{3}} P_{\omega_{2}} = \frac{\omega_{1}^{2}}{\varepsilon_{0}c^{3}} (\frac{d^{2}}{n^{3}}) \frac{L^{2}}{A_{eff}} P_{\omega_{3}} P_{\omega_{2}}$$

$$factor \frac{1}{2} due to$$

$$Gaussian shape$$

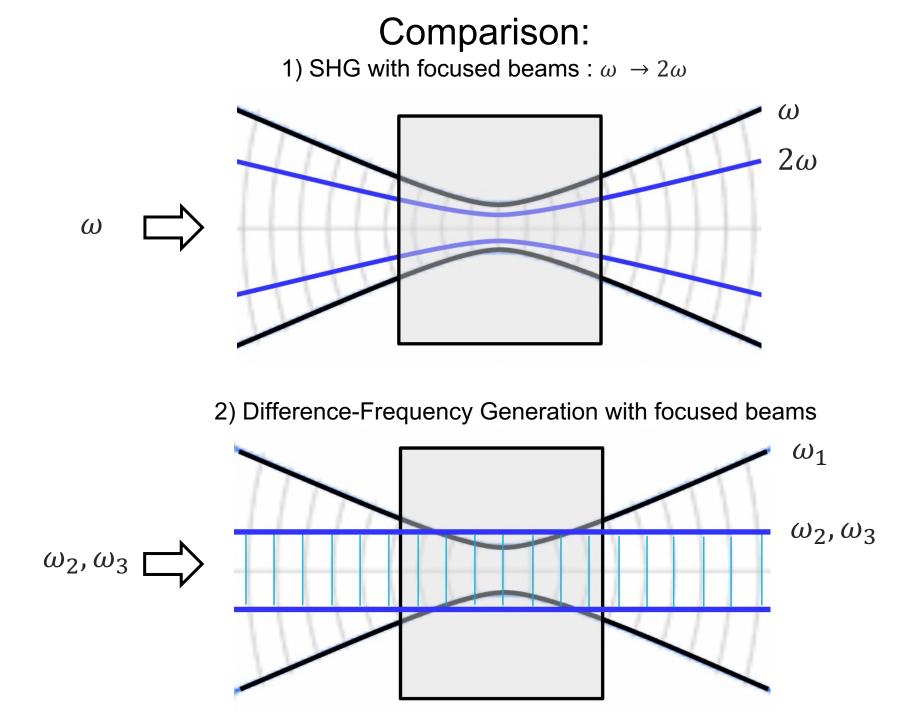
$$aveaging$$

$$effective pump$$

$$beam area$$

 $A_{eff}/2$

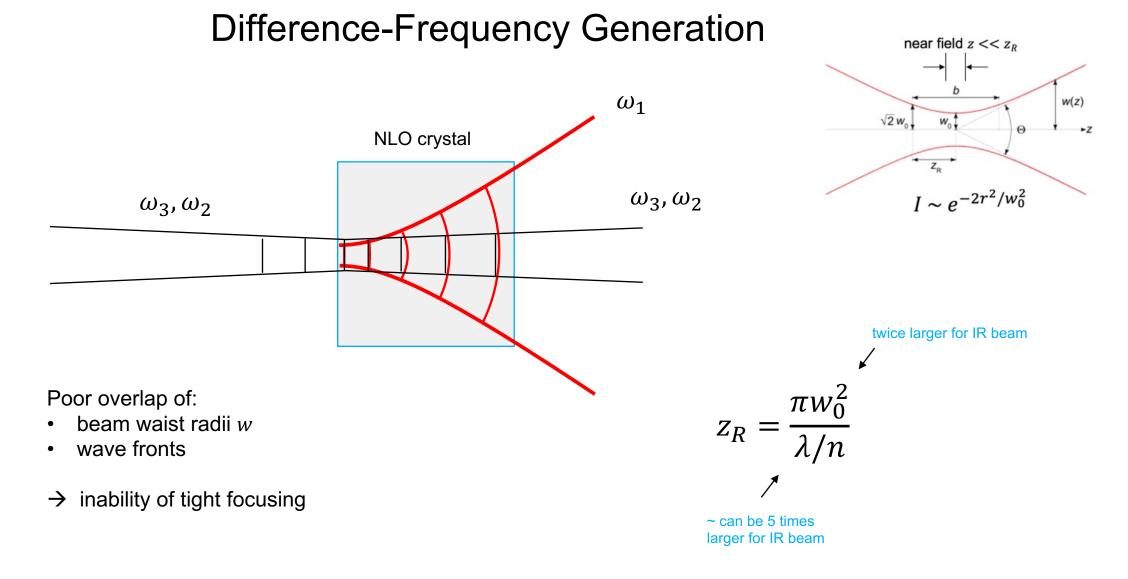
(11.4)



The Gaussian fundamental beam (solid line) and its 2-nd harmonic (dashed line) propagate in a similar way (and have the same Rayleigh length z_R). The radii of curvature coincide since

 $R(z) = z \left[1 + \left(\frac{z_{\rm R}}{z}\right)^2 \right]$

The wavefront radii of curvature are different

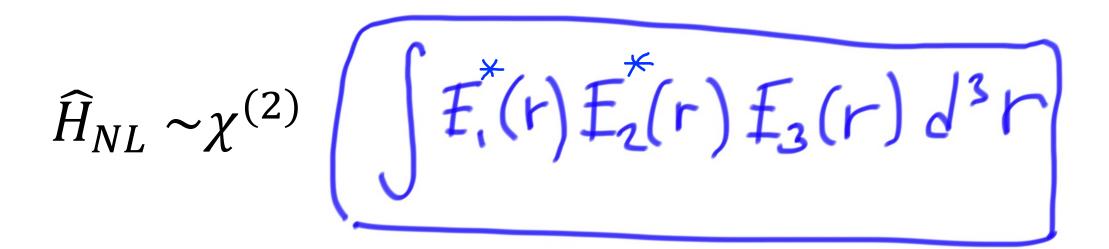


Because of the poor overlap, one can not focus the pump tightly – need to have the pump beams to be such that for the genearted IR beam (ω_1): z_R > crystal length.

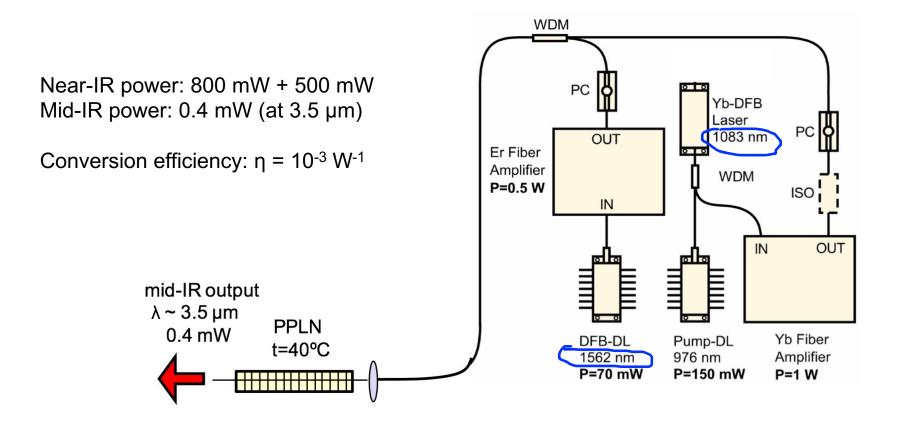
For IR beam: z_R > crystal length for ω_3 , ω_2 and z_R < crystal length

In quantum mechanics (QM), the interaction Hamiltonian is proportional to the overlap integral.

It is the **overlap integral**, which is responsible for **phase matching** in QM.



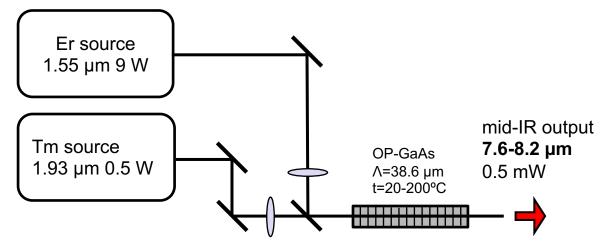
Gaussian beams, DFG, numerical examples



Experimental setup for the 3.5-µm DFG source based on mixing the amplified outputs of two DFB lasers in PPLN. DL, diode laser; ISO, optical isolator; PC, polarization controller; WDM, wavelength division multiplexer.

DFG in orientation-patterned GaAs (OP-GaAs)

 $P_{out} = \eta \times P_1 P_2$



Near-IR power: 9 W + 0.5 W Mid-IR power: 0.5 mW Conversion efficiency: ~ 10⁻⁴ W⁻¹

S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. J. Boyland, J. K. Sahu, M. Ibsen, and W. A. Clarkson, "Broadly tunable single-frequency cw midinfrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs," Opt. Lett. **33**, 1413 (2008).

Gaussian beams, DFG, numerical examples

$$P_{\omega_1} = \frac{\omega_1^2}{\varepsilon_0 c^3} \left(\frac{d^2}{n^3}\right) \frac{L^2}{A_{eff}} P_{\omega_3} P_{\omega_2}$$

PPLN crystal

 $\lambda_3 = 1083$ nm $\lambda_2 = 1562$ nm $\lambda_1 = 3.53 \ \mu m \ \omega_1 = 5.34 e 14 \ s^{-1}$

 ϵ_0 =8.85e-12 F/m c=3e8 m/s

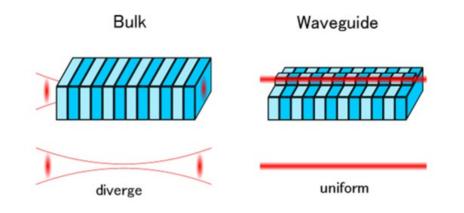
 $d_{33}=22 \text{ pm/V}, \text{ (for mid-IR)} \\ eee \text{ quasi phase matching,} \\ d_{\text{eff}}=\frac{2}{\pi}d_{33}=14 \text{ pm/V}=14\text{e}-12 \text{ m/V} \\ n=2.14; \\ L=5 \text{ cm (5e-2 m)} \\ w_0=230 \text{ } \mu\text{m (Gauss)}, \text{ } A_{\text{eff}}=\frac{\pi w_0^2}{2}=8.3\text{e}-8 \text{ m}^2 \\ P_{\omega_3}=P_{\omega_2}=1 \text{ W} \\ \end{cases}$

 P_{ω_1} = 5.34e14^2/8.85e-12/3e8^3 *(14e-12^2/2.14^3) *5e-2^2/8.3e-8 *1^2 = 7.2e-4 W = 0.72 mW

Power conversion efficiency

$$\eta_{DFG} = \frac{0.72mW}{1W \cdot 1W} = 0.72 \cdot 10^{-3} \ W^{-1}$$

DFG in PPLN waveguide ~ 100 times more efficient



Zn:LiNbO3 ridge **waveguide** fabricated by direct bonding (11 µm thick, 17 µm wide and 38 mm long)

1.064 µm 'pump' generated with a laser diode and amplified in an ytterbium-doped fiber amplifier +

1.55 µm 'signal' generated by an external cavity laser diode and an erbium-doped fiber amplifier.

Near-IR power: 444 mW + 558 mW Mid-IR power: 65 mW at 3.4 μ m Conversion efficiency: ~ 0.26 W⁻¹

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn: LiNbO3 waveguide, Electron. Lett. 44, 288 (2008).

DFG in a waveguide, numerical example

For WG, we use formula (11.2)

$$P_{\omega_{1}} = \frac{2\omega_{1}^{2}}{\varepsilon_{0}c^{3}} (\frac{d^{2}}{n^{3}}) \frac{L^{2}}{A_{eff}} P_{\omega_{3}} P_{\omega_{2}} \qquad \text{see} \quad (11.2)$$

PPLN crystal

 $\lambda_3 = 1064$ nm $\lambda_2 = 1550$ nm $\lambda_1 = 3.4 \ \mu m \ \omega_1 = 5.54 e^{-1}$

 ϵ_0 =8.85e-12 F/m c=3e8 m/s

 $\begin{array}{l} {\rm d}_{33}{=}22 \ {\rm pm/V},\\ eee \ {\rm quasi \ phase \ matching},\\ {\rm d}_{\rm eff}{=}\frac{2}{\pi}{\rm d}_{33} ={14 \ {\rm pm/V}}\\ {\rm n}{=}2.14;\\ {\it L}{=}38 \ {\rm mm}\\ {\it A}_{\rm eff}{=} \ 11x17 \ {\rm \mu}m^2 = 1.9{\rm e}{-}10 \ {\rm m}^2\\ {\it P}_{\omega_3}{=} \ 0.444 \ W, {\it P}_{\omega_2}{=}0.558 \ W \end{array}$

 P_{ω_1} = 2*5.54e14^2/8.85e-12/3e8^3 *(14e-12^2/2.14^3) *3.8e-2^2/1.9e-10 *0.444*0.558 =

= 0.097 W ~ 100 mW

Power conversion efficiency

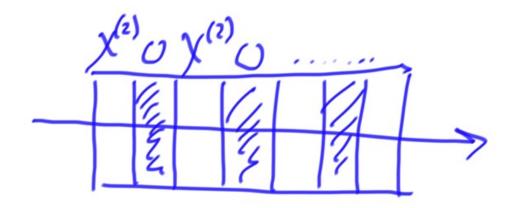
$$\eta_{DFG} = \frac{97mW}{444mW \cdot 558mW} = 0.4 \ W^{-2}$$

Common nonlinear optical crystals used for DFG

Crystal	Transparency range (µm)	d _{eff} (pm/V)	Average ref. index	NLO FOM d _{eff} ² /n ³ with respect to PPLN
Periodically poled oxides				
PP LN	0.4-5.5	2/π·22.3=14.2	2.13	1
PP KTP	0.35-4.3	2/ <i>π</i> ·16.9=10.8	1.8	0.95
Birefringent				
AGS	0.47-11	12	2.4	0.5
AGSe	0.71-19	33	2.65	2.8
ZGP	1-12	75	3.13	8.8
GaSe	0.62-20	54	2.73	6.8
Orientation patterned				
OP-GaAs	0.9-17	2/π·94=60	3.3	6.2
OP-GaP	0.5-12	2/π·37=23.6	3.05	2.30

Other ways of phase matching in DFG :

 Phase matching via zeroing NLO coefficient every half period



2. Phase matching via modal dispersion e.g. TE and TM

