Lecture 12

Optical parametric oscillators and amplifiers.
Singly- and doubly- resonant oscillators.

Optical parametric process

Only one strong input is present

$$
\omega_{3}=\omega_{1}+\omega_{2}
$$

Optical parametric processes

$$
\omega_{3} \rightarrow \omega_{1}+\omega_{2}
$$

Amplifier (OPA):

Weak signal at ω_{1} is amplified, and ω_{2} is generated

Generator (OPG):

No seed. Both ω_{1} and ω_{2} (signal and idler) are generated

Oscilaltor (OPO):

Both ω_{1} and ω_{2} (signal and idler) are generated through a resonant enhancement

Optical parametric amplification

Again, recall coupled-wave equations for 3 waves - Lecture 5 (5.7)

$$
\omega_{3}=\omega_{1}+\omega_{2}
$$

$$
\begin{align*}
\frac{d A_{1}}{d z} & =-i g A_{3} A_{2}^{*} e^{-i \Delta k z} \\
\frac{d A_{2}}{d z} & =-i g A_{3} A_{1}^{*} e^{-i \Delta k z} \tag{5.7}\\
\frac{d A_{3}}{d z} & =-i g A_{1} A_{2} e^{i \Delta k z}
\end{align*}
$$

NL coupling coefficient

$$
\mathrm{g}=\frac{d}{c} \sqrt{\frac{\omega_{1} \omega_{2} \omega_{3}}{n_{1} n_{2} n_{3}}}
$$

define $\gamma=g A_{3} \quad$ and get:

Optical parametric amplification

$$
\rightarrow \quad \frac{d^{2} A_{1}}{d z^{2}}-\gamma^{2} A_{1}=0 \quad \text { and } \quad \frac{d^{2} A_{2}}{d z^{2}}-\gamma^{2} A_{2}=0
$$

The general solutions to this equation are:

$$
e^{ \pm \gamma z} \text { or } \sinh (\gamma z) \& \cosh (\gamma z)
$$

Look for solutions in the form: $\quad \begin{aligned} & A_{1}=a_{1} \cosh (\gamma z)+b_{1} \sinh (\gamma z) \\ & \\ & A_{2}=a_{2} \cosh (\gamma z)+b_{2} \sinh (\gamma z)\end{aligned}$

For initial conditions: $\quad A_{1}=A_{10}$

$$
A_{2}=A_{20}
$$

Solution:

$$
\begin{align*}
& A_{1}=A_{10} \cosh (\gamma z)-i A_{20}^{*} \sinh (\gamma z) \\
& A_{2}=A_{20} \cosh (\gamma z)-i A_{10}^{*} \sinh (\gamma z) \tag{12.1}
\end{align*}
$$

Optical parametric amplifier (OPA)

Now if we have input at only one wave:
Initial conditions:

$$
\begin{aligned}
& A_{1}=A_{10} \\
& A_{2}=0
\end{aligned}
$$

Solution:

$$
\begin{align*}
& A_{1}=A_{10} \cosh (\gamma z) \\
& A_{2}=-i A_{10}^{*} \sinh (\gamma z) \tag{12.2}
\end{align*}
$$

The OPA uses three-wave mixing in a nonlinear crystal to provide an optical gain of the 'seed' at ω_{1}. Simultneously, the wave at ω_{2} grows from zero and is amplified.

The corresponding photon-flux densities are:

$$
\begin{gather*}
\Phi_{1}=\Phi_{10} \cosh ^{2}(\gamma z) \\
\Phi_{2}=\Phi_{10} \sinh ^{2}(\gamma z) \tag{12.3}\\
\Phi_{1}-\Phi_{10}=\Phi_{10}\left(\cosh ^{2}(\gamma z)-1\right)=\Phi_{10} \sinh ^{2}(\gamma z)=\Phi_{2} \tag{12.3a}
\end{gather*}
$$

In terms of intensities:

$$
\begin{align*}
& I_{1}=I_{10} \cosh ^{2}(\gamma z) \tag{12.4}\\
& I_{2}=\frac{\omega_{2}}{\omega_{1}} I_{10} \sinh ^{2}(\gamma z)
\end{align*}
$$

Optical parametric amplification

$$
\begin{align*}
& \text { For } \quad \gamma z \gg 1 \\
& \cosh ^{2}(\gamma z)=\frac{1}{4}\left(e^{\gamma z}+e^{-\gamma z}\right)^{2} \approx e^{2 \gamma z} / 4 \tag{12.5}
\end{align*}
$$

- the gain increases exponenially with γz. This behavior of monotonic growth of both waves is different from that of sum-frequency generation, where oscillatory behavior occurs.

$$
\text { Recalling that } \quad I_{\omega}=\frac{c \varepsilon_{0}}{2} \omega\left|A_{\omega}\right|^{2} \quad \rightarrow \quad\left|A_{\omega}\right|^{2}=\frac{2 I_{\omega}}{c \varepsilon_{0} \omega}
$$

The gain coefficient

$$
\begin{align*}
\boldsymbol{\gamma}=g A_{3} & =\frac{d}{c} \sqrt{\frac{\omega_{1} \omega_{2} \omega_{3}}{n_{1} n_{2} n_{3}}} A_{3}=\sqrt{\frac{2 \omega_{1} \omega_{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega_{3}}} \tag{12.6}\\
& =\sqrt{\frac{8 \pi^{2}}{\lambda_{1} \lambda_{2} \varepsilon_{0} c}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega_{3}}}
\end{align*}
$$

Optical parametric process with some phase mismatch

Make a substitution: $\quad A_{1}=a_{1} e^{-i \Delta k z / 2}, A_{2}=a_{2} e^{-i \Delta k z / 2}$
Then (12.7) is reduced (see Stegeman book $p .114$) to the equations

$$
\begin{equation*}
\frac{d^{2} a_{1}}{d z^{2}}-\gamma^{\prime 2} a_{1}=0 \quad \frac{d^{2} a_{2}}{d z^{2}}-\gamma^{\prime 2} a_{2}=0 \tag{12.8}
\end{equation*}
$$

where $\quad \gamma^{\prime 2}=\gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}$

$$
\begin{align*}
\quad \frac{d A_{1}}{d z} & =-i \gamma A_{2}^{*} e^{-i \Delta k z} \tag{12.7}\\
\frac{d A_{2}}{d z} & =-i \gamma A_{1}^{*} e^{-i \Delta k z}
\end{align*}
$$

$$
\begin{aligned}
& a_{1}=\alpha_{1} \cosh \left(\gamma^{\prime} z\right)+\beta_{1} \sinh \left(\gamma^{\prime} z\right) \\
& a_{2}=\alpha_{2} \cosh \left(\gamma^{\prime} z\right)+\beta_{2} \sinh \left(\gamma^{\prime} z\right)
\end{aligned}
$$

Optical parametric process with some phase mismatch

and

$$
\begin{aligned}
& A_{1}=\left\{\alpha_{1} \cosh \left(\gamma^{\prime} z\right)+\beta_{1} \sinh \left(\gamma^{\prime} z\right)\right\} e^{-i \Delta k z / 2} \\
& A_{2}=\left\{\alpha_{2} \cosh \left(\gamma^{\prime} z\right)+\beta_{2} \sinh \left(\gamma^{\prime} z\right)\right\} e^{-i \Delta k z / 2}
\end{aligned}
$$

For initial conditions: $\quad A_{1}=A_{10} ; \quad A_{2}=0$

$$
\begin{aligned}
& \left.A_{1}=\left\{A_{1}\right) \cosh \left(\gamma^{\prime} z\right)+\beta_{1} \sinh \left(\gamma^{\prime} z\right)\right\} e^{-i \Delta k z / 2} \\
& A_{2}=\left\{\alpha_{2} \cosh \left(\gamma^{\prime} z\right)+\beta_{2} \sinh \left(\gamma^{\prime} z\right)\right\} e^{-i \Delta k z / 2}
\end{aligned}
$$

left side
right side

$$
\begin{array}{cc}
\frac{d A_{1}}{d z}=\left(-\frac{i \Delta k z}{2}\right)\left\{A_{10} \underline{\cosh \left(\gamma^{\prime} z\right)+\underline{\beta_{1} \sinh }\left(\gamma^{\prime} z\right)}\right\} e^{-\frac{i \Delta k z}{2}}+\gamma^{\prime}\left\{A_{1 \underline{0} \sinh \left(\gamma^{\prime} z\right)}^{\underline{\beta_{1}}} \underline{\underline{\beta_{1}} \cosh \left(\gamma^{\prime} z\right)}\right\} e^{-\frac{i \Delta k z}{2}} \\
-i \gamma A_{2}^{*} e^{-i \Delta k z}=(-i \gamma) \beta_{2}^{*} \sinh \left(\gamma^{\prime} z\right) e^{+i \Delta k z / 2} e^{-i \Delta k z}=(-i \gamma) \beta_{2}^{*} \underline{\underline{\sinh }}\left(\gamma^{\prime} z\right) e^{-i \Delta k z / 2} \\
\left(-\frac{i \Delta k z}{2}\right) \beta_{1}+\gamma^{\prime} A_{10}=(-i \gamma) \beta_{2}^{*} ; & \beta_{1}=i A_{10} \frac{\Delta k}{2 \gamma^{\prime}} \\
A_{10}\left\{\left(\frac{\Delta k}{2}\right)^{2} \frac{1}{\gamma^{\prime}}+\gamma^{\prime}\right\}=(-i \gamma) \beta_{2}^{*} ; & \beta_{2}=i A_{10}^{*} \frac{\Delta k}{2 \gamma^{\prime}} \\
A_{10} \frac{\left(\frac{\Delta k}{2}\right)^{2}+\gamma^{\prime 2}}{\gamma^{\prime}}=(-i \gamma) \beta_{2}^{*}
\end{array}
$$

Optical parametric process

The final solution is:

$$
\begin{align*}
& A_{1}=A_{10}\left[\cosh \left(\gamma^{\prime} z\right)+i \frac{\Delta k}{2 \gamma^{\prime}} \sinh \left(\gamma^{\prime} z\right)\right] e^{-i \Delta k z / 2} \\
& A_{2}=-i A_{10}^{*} \frac{\gamma}{\gamma^{\prime}} \sinh \left(\gamma^{\prime} z\right) e^{-i \Delta k z / 2} \tag{12.9}
\end{align*}
$$

In terms of intensities:

$$
\begin{align*}
I_{1}= & I_{10}\left|\cosh \left(\gamma^{\prime} z\right)+i \frac{\Delta k}{2 \gamma^{\prime}} \sinh \left(\gamma^{\prime} z\right)\right|^{2} \\
& =I_{10}\left[\cosh ^{2}\left(\gamma^{\prime} z\right)+\left(\frac{\Delta k}{2 \gamma^{\prime}}\right)^{2} \sinh ^{2}\left(\gamma^{\prime} z\right)\right] \tag{12.10}\\
I_{2} & =\frac{\omega_{2}}{\omega_{1}} I_{10}\left(\frac{\gamma}{\gamma^{\prime}}\right)^{2} \sinh ^{2}\left(\gamma^{\prime} z\right)
\end{align*}
$$

$$
\gamma^{\prime 2}=\gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}
$$

Optical parametric process

$$
\gamma^{\prime}=\sqrt{\gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}}
$$

What happens if $\quad \gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}<0$?

```
cosh(ix)=\operatorname{cos}(x)
sinh(ix)=\operatorname{sin}(x)
    cosh }->\mathrm{ cos
        and
    sinh }->\mathrm{ sin
```

$$
\gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}<0
$$

periodic solution instead of steadily growing one

Transition from periodic to exponentially growing one

Optical parametric process

$$
\gamma^{\prime 2}=\gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}
$$

When the gain increment γ becomes large, the interaction becomes less sensitive to phase mismatch Δk

$$
\text { gain }=\cosh ^{2}\left(\gamma^{\prime} \mathrm{L}\right)
$$

Optical parametric process for $\frac{\Delta k}{2} \gg \gamma$

Test (12.10) for
 $\frac{\Delta k}{2} \gg \gamma$ and $A_{2} \ll A_{10} \ll A_{3}$ - Low efficiency DFG process to produce A_{2}

$$
\gamma^{\prime}=\sqrt{\gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}} \approx i \frac{\Delta k}{2} \quad \gamma=g A_{3}=\frac{d}{c} \sqrt{\frac{\omega_{1} \omega_{2} \omega_{3}}{n_{1} n_{2} n_{3}}} A_{3}=\sqrt{\frac{2 \omega_{1} \omega_{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega_{3}}}
$$

From (12.10)

$$
\sinh \left(\gamma^{\prime} z\right) \rightarrow \sin \left(\frac{\Delta k}{2} \mathrm{z}\right)
$$

$$
=\frac{\omega_{2}}{\omega_{1}} I_{10} \frac{2 \omega_{1} \omega_{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega_{3}} L^{2} \frac{\sin ^{2}\left(\frac{\Delta k}{2} L\right)}{\left(\frac{\Delta k}{2} L\right)^{2}}=I_{10} I_{30} \frac{2 \omega_{2}^{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) L^{2} \sin c^{2}\left(\frac{\Delta k}{2} L\right)
$$

Optical parametric process

Four types of the optical parametric devices
(a)

(b)

(c)

(d)

OPGIOPA, ps and fs pulses, needs high pump pulse energy

Optical parametric amplifier (OPA)

nonlinear crystal
Parametric gain coefficient $G=\cosh ^{2}(\gamma L)$

where $\quad \gamma=\sqrt{\frac{2 \omega_{1} \omega_{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega_{3}}} \quad$\begin{tabular}{l}

- on-axis gain

increment
\end{tabular}

$I_{\omega_{3}}$ - pump intensity (power density) (W/cm ${ }^{2}$
$d=d_{\text {eff }}-$ nonlinear coefficient ($p m / V$)
For $(\gamma \mathrm{L}) \ll 1, \quad \cosh ^{2}(\gamma \mathrm{~L}) \approx 1+(\gamma \mathrm{L})^{2}$
For $(\gamma \mathrm{L}) \gg 1, \quad \cosh ^{2}(\gamma \mathrm{~L}) \approx 1 / 4 \exp (2 \gamma \mathrm{~L})$
$\cosh ^{2}$ is a fast growing function

Pump	Pump intensity	Parametric gain
CW laser, few W	$\sim 5 \mathrm{~kW} / \mathrm{cm}^{2}$	few $\%$
Nanosecond pulses $\sim 1 \mathrm{~mJ} /$ pulse	$\sim 1 \mathrm{MW} / \mathrm{cm}^{2}$	~ 10
Intense ps or fs pulses $\sim 1 \mathrm{~mJ} /$ pulse	$\sim 1 \mathrm{GW} / \mathrm{cm}^{2}$	$\sim 10^{10}$

Optical parametric generator (OPG)

Quantum picture: The input is the vacuum state quantum noise : one photon per mode.

Quantum theory tells (see Yariv "Quant. Electron." book) that in fact that the amount of the output photons (per mode), n_{1} and n_{2} at ω_{1} and ω_{1}, is given by

$$
\begin{aligned}
& n_{1}=n_{10} \cosh ^{2}(\gamma L)+\left(1+n_{20}\right) \sinh ^{2}(\gamma L) \\
& n_{2}=n_{20} \cosh ^{2}(\gamma L)+\left(1+n_{10}\right) \sinh ^{2}(\gamma L) \\
& \text { where } n_{10} \text { and } n_{20} \text { are the inputs at } \omega_{1} \text { and } \omega_{1} ; \text { and } \quad \gamma=\sqrt{\frac{2 \omega_{1} \omega_{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega_{3}}}
\end{aligned}
$$

Thus, for $\quad A_{10}=A_{20}=0$, the output is non-zero and is seeded by the quantum noise

Optical parametric generator and quantum noise

The quantum noise is associated with the vacuum state, which is equivalent to one photon per mode How to make sense of one photon per mode?

Cavity length $L \rightarrow$ mode spacing $\quad \Delta v_{m}=\frac{c}{2 L}$ 2L/c
Total longitudianl modes (assume one transverse mode) $\quad N=\Delta v / \Delta v_{m}=\Delta v 2 L / c$
Total quantum noise 'power' entering the crystal = (total number of noise photons) $\mathrm{x} \hbar \omega /$ (period of circulation) $=$

$$
\boldsymbol{P}_{\text {Qnoise }}=N \hbar \omega / T=\Delta v 2 L / c \hbar \omega /(2 L / c)=\hbar \omega \times \Delta \boldsymbol{v}
$$

Optical parametric generator (OPG)

nonlinear crystal

High pumping intensity needed, typically > 1 GW/cm²

- to achieve high (>1010) gain

The principle of operation of a travelling-wave 'superfluorescent' optical parametric generator (OPG) is based on a single-pass high-gain ($>10^{10}$) amplification of quantum noise in a nonlinear crystal pumped by intense short laser pulses.

The main characteristics of the travelling-wave OPGs:

- Simplicity (no cavity needed). One pump laser.
- Ability to produce high peak power outputs (>1 MW) in the form of a single pulse.
- Broad tunability, restricted only by the phase-matching and crystal transparency.
- No resonant build-up time. This allows generating synchronized, independently tunable pulses for time-resolved spectroscopy.
- The output builds from quantim noise ($\sim \mathrm{nW}$) to reach the peak power comparable to that of the pump (\sim MW)

Spontaneous parametric down conversion as a source of entangled photons
Typically, low-power lasers (CW lasers) are used as a pump

$$
\begin{aligned}
& n_{1}=n_{10} \cosh ^{2}(\gamma L)+\left(1+n_{20}\right) \sinh ^{2}(\gamma L) \\
& n_{2}=n_{20} \cosh ^{2}(\gamma L)+\left(1+n_{10}\right) \sinh ^{2}(\gamma L)
\end{aligned}
$$

Spontaneous Parametric Down Conversion

Energy
conservation

Momentum conservation

Optical parametric process

Optical parametric oscillator (OPO)
 Singly -resonant OPO (SRO)

Let us find the oscillation threshold for a SRO. The OPO cavity is
resonant for ω_{2}. Assume the fractional intensity roundtrip loss at resonating signal wave ω_{2} to be $\operatorname{loss}_{\omega 2}^{I} \ll 1$. For example it can be associated with non-unity reflection of the incoupling/outcoupling OPO mirrors (loss $\omega_{\omega 2}^{I}=1-R_{1} R_{2}$) or loss in the NLO crystal.

Then the threshold condition can be simply written as:

$$
\left(1-\operatorname{loss}_{\omega 2}^{I}\right) \times \cosh ^{2}(\gamma L)=1 ;
$$

fractional power gain

$$
\cosh ^{2}(\gamma L) \approx 1+(\gamma L)^{2}
$$

For small OPO gain $(\gamma L)^{2} \ll 1$

Assuming that the loss is small, $\ll 1$, and $\Delta k=0$, we can write

$$
\left(1-\operatorname{loss}_{\omega 2}^{I}\right)\left(1+(\gamma L)^{2}\right)=1
$$

or approximately

$$
\begin{equation*}
(\gamma L)^{2}=\text { loss }_{\omega 2}^{I} \tag{12.11}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2 \omega_{1} \omega_{2}}{\varepsilon_{0} c^{3}}\left(\frac{d^{2}}{n^{3}}\right) I_{\omega_{3}} L^{2} \approx \operatorname{loss} s_{\omega 2}^{I} \tag{12.12}
\end{equation*}
$$

$$
I_{\omega_{3}}^{t h r} \approx \frac{\varepsilon_{0} c^{3}}{2 \omega_{1} \omega_{2} L^{2}} \frac{\operatorname{loss}_{\omega 2}^{I}}{\left(d^{2} / n^{3}\right)} \sim \operatorname{loss}_{\omega 2}^{I}
$$

Optical parametric oscillator (OPO)
 Doubly -resonant OPO (DRO)

Now the OPO cavity is resonant for both ω_{1} and ω_{2}.
Assume the fractional intensity roundtrip loss at ω_{1} is $\operatorname{loss}_{\omega 1}^{I}$ so that the field loss is $\operatorname{loss}_{\omega 1}^{E}=\frac{1}{2} \operatorname{loss}{ }_{\omega 1}^{I}$ at ω_{2} is $\operatorname{loss}_{\omega 2}^{I}$ so that the field loss is $\operatorname{loss}_{\omega 2}^{E}=\frac{1}{2} \operatorname{loss}_{\omega 2}^{I}$

Then the threshold condition can be found in this way: As before in this Lecture, we write the coupled equations for the two resonating waves
in a DRO a fractional gain needed to achieve the threshold is very
small, so we can assume that on a single pass $\Delta A \ll A$ and integrate these equations..
. to get field increase after passing the crystal

$$
\begin{aligned}
\Delta A_{1} & =-i \gamma L A_{2}^{*} \\
\Delta A_{2} & =-i \gamma L A_{1}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d A_{1}}{d z}=-i \gamma A_{2}^{*} \\
& \frac{d A_{2}}{d z}=-i \gamma A_{1}^{*}
\end{aligned}
$$

by adding the

losses we get the field increase
aftear one
roundtrip

$$
\begin{aligned}
\Delta A_{1} & =-\operatorname{loss}_{\omega 1}^{E} A_{1}-i \gamma L A_{2}^{*} \\
\Delta A_{2} & =-i \gamma L A_{1}^{*}-\operatorname{loss}_{\omega 2}^{E} A_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { The threshold condition is } \\
\text { when } \Delta A_{1}=\Delta A_{2}=0
\end{array} \quad 0=-\operatorname{loss}_{\omega 1}^{E} A_{1}-\quad i \gamma L A_{2}^{*}, \quad \square \quad-i \gamma L A_{1}^{*}-\operatorname{loss}_{\omega 2}^{E} A_{2} . \left\lvert\, * \quad \begin{array}{r}
\operatorname{loss}_{\omega 1}^{E} A_{1}+i \gamma L A_{2}^{*}=0 \\
i \gamma L A_{1}-\operatorname{loss}_{\omega 2}^{E} A_{2}^{*}=0
\end{array}\right.
$$

Optical parametric oscillator (OPO)
 Doubly -resonant OPO (DRO)

For nontrivial solution the determinant

$$
\begin{aligned}
& \operatorname{loss}_{\omega 1}^{E}+i \gamma L \\
& i \gamma L-\operatorname{loss}_{\omega 2}^{E}
\end{aligned}
$$

$$
\text { should }=0 \text {, so we get }
$$

DRO

$$
\begin{equation*}
(\gamma L)^{2}=\operatorname{loss}_{\omega 1}^{E} \operatorname{los} S_{\omega 2}^{E}=\frac{1}{4} \operatorname{loss}_{\omega 1}^{I} \operatorname{loss} S_{\omega 2}^{I} \tag{12.13}
\end{equation*}
$$

compare: SRO
$(\gamma L)^{2}=\operatorname{loss}_{\omega 2}^{I} \quad$ (12.11)
Comparing (12.11) and (12.13) one can see that the DRO threshold $I_{\omega_{3}}^{t h r} \sim(\gamma L)^{2}$ - can be dramatically lower (by $\frac{4}{\operatorname{loss}_{\omega 1}^{I}}$ times) than that for SRO

Example: for the fractional loss (in intensity) at $\omega_{1} \operatorname{loss}{ }_{\omega 1}^{I}=4 \%$, the DRO threshold is 100 times smaller than for SRO

However in DRO both signal and idler waves have to belong to the cavity modes simultaneously (an overconstrained system). DRO is very sensitive (interferometrically) to the tiny cavity length fluctuations and hence is less preferrd in practical applications.

Optical parametric process

So why there is such a big difference in thresholds?

DRO: both waves are coherent and resonate

resonant waves

resonant wave

