Lecture 15

Frequency conversion using ultrashort optical pulses.

Problem solving practices

Group vs phase velocity

If you do not neglect dispersion:

The pulse propagation velocity (also known as the group velocity $v_{g}=c / n_{g}$) differs from the propagation velocity of the carrier (also known as the phase velocity $v_{p}=c / n$). Energy is transported through the medium at group velocity.

Let us show that $a(z, t)$ propagates with the group velocity

Time-domain formulation of nonlinear optics

In the time-domain formulation, we express the field in terms of slowly varying envelope multiplied by a carrier:

The Fourier transform of the envelope function is centered near ZERO frequency

$$
E(t)=a(t) e^{i \omega_{0} t}
$$

$$
A_{\widetilde{\omega}}=\int_{-\infty}^{\infty} a(t) e^{-i \widetilde{\omega} t} d t
$$

The Fourier transform of the envelope function

$$
a(t)=\int_{-\Delta \omega}^{\Delta \omega} A_{\widetilde{\omega}} e^{i \widetilde{\omega} t} \frac{d \widetilde{\omega}}{2 \pi}
$$

Inverse Fourier transform

$$
\begin{equation*}
E(t)=e^{i \omega_{0} t} a(t)=e^{i \omega_{0} t} \int_{-\Delta \omega}^{\Delta \omega} A_{\widetilde{\omega}} e^{i \widetilde{\omega} t} \frac{d \widetilde{\omega}}{2 \pi}=\int_{-\Delta \omega}^{\Delta \omega} A_{\widetilde{\omega}} e^{i\left(\omega_{0}+\widetilde{\omega}\right) t} \frac{d \widetilde{\omega}}{2 \pi}=\int_{\omega_{0}-\Delta \omega}^{\omega_{0}+\Delta \omega} A_{\widetilde{\omega}} e^{i \omega t} \frac{d \omega}{2 \pi} \tag{15.2}
\end{equation*}
$$

$$
\begin{aligned}
& \omega=\omega_{0}+\widetilde{\omega} \\
& \widetilde{\omega}=\omega-\omega_{0} \\
& d \omega=d \widetilde{\omega}
\end{aligned}
$$

Time-domain formulation of nonlinear optics

Each spectral component propagates with its own phase velocity

$$
\begin{gathered}
e^{i \omega t} \rightarrow e^{i \omega t-i k z} \quad k=k(\omega) \text {-dispersion } \\
A_{\widetilde{\omega}} \rightarrow A_{\widetilde{\omega}} e^{-i k z} \\
E(t, z)=\int_{\omega_{0}-\Delta \omega}^{\omega_{0}+\Delta \omega} A_{\widetilde{\omega}} e^{i(\omega t-k(\omega) z)} d \omega=\int_{-\Delta \omega}^{\Delta \omega} A_{\widetilde{\omega}} e^{i\left(\omega_{0}+\widetilde{\omega}\right) t-i\left(k_{0}+\Delta k(\omega)\right) z} d \widetilde{\omega}=
\end{gathered}
$$

Taylor expansion:

$$
k=k(\omega)=k_{0}+\Delta k(\omega)=k_{0}+\frac{d k}{d \omega} \widetilde{\omega}=k_{0}+\frac{\widetilde{\omega}}{v_{g}} ; \quad v_{g}=\frac{d \omega}{d k}
$$

$$
\begin{align*}
& =e^{i\left(\omega_{0} t-k_{0} z\right)} \int_{-\Delta \omega}^{\Delta \omega} A_{\widetilde{\omega}} e^{i(\widetilde{\omega} t-\Delta k z)} d \widetilde{\omega}=e^{i\left(\omega_{0} t-k_{0} z\right)} \int_{-\Delta \omega}^{\Delta \omega} A_{\widetilde{\omega}} e^{i\left(\widetilde{\omega} t-\frac{\widetilde{\omega}}{v_{g}} z\right)} d \widetilde{\omega}= \\
& =e^{i\left(\omega_{0} t-k_{0} z\right)} \underbrace{\substack{\text { envelope (amplitude) }}}_{\substack{\left.\int_{-\Delta \omega}^{\Delta \omega} A_{\widetilde{\omega}} e^{i \widetilde{\omega}\left(t-\frac{z}{v_{g}}\right)} d \widetilde{\omega}\right)} a\left(t-\frac{z}{v_{g}}\right) e^{i\left(\omega_{0} t-k_{0} z\right)}} \begin{array}{c}
\text { carrier (phase) }
\end{array} \tag{15.3}
\end{align*}
$$

$$
v_{g}=\frac{d \omega}{d k}=\left(\frac{d k}{d \omega}\right)^{-1}=\frac{c}{n_{g}} \quad n_{g}=c\left(\frac{d k}{d \omega}\right)=c \frac{d(\omega n / c)}{d \omega}=n+\omega \frac{d n}{d \omega}=n-\lambda \frac{d n}{d \lambda}>n \quad v_{g}<v_{p}
$$

Time-domain formulation of nonlinear optics

from Lecture 2

$$
\begin{aligned}
\nabla \cdot \boldsymbol{D} & =\mathbf{0} \\
\nabla \cdot \boldsymbol{B} & =0 \\
\nabla \times \quad \nabla \times \boldsymbol{E} & =-\frac{d \boldsymbol{B}}{d t} \\
\nabla \times \boldsymbol{H} & =\frac{d \boldsymbol{D}}{d t}
\end{aligned}
$$

Wave equation

$$
\nabla^{2} \boldsymbol{E}-\mu_{0} \frac{d^{2} \boldsymbol{D}}{d t^{2}}=0
$$

$$
\frac{\partial^{2} E}{\partial z^{2}}-\mu_{0} \frac{d^{2} D}{d t^{2}}=0
$$

$$
D=D_{(1)}+D_{(2)}=\varepsilon E+\boldsymbol{P}_{N L}
$$

$$
\left.\begin{array}{ll}
\frac{\partial^{2} E}{\partial z^{2}}-\mu_{0} \varepsilon \frac{d^{2} E}{d t^{2}}=\mu_{0} \frac{\partial^{2} P_{N L}}{\partial t^{2}} \\
\frac{\partial^{2} E}{\partial-2}-\frac{n^{2}}{2} \frac{\partial^{2} E}{\partial+2}=\mu_{0} \frac{\partial^{2} P_{N L}}{\partial+2}
\end{array}\right\} \begin{aligned}
& \varepsilon=\varepsilon_{0} n^{2} \\
& \text { wave equation } \\
& \text { with an external } \\
& \begin{array}{l}
\text { driving force } \\
\sqrt{\varepsilon_{0} \mu_{0}}
\end{array} \\
& \text { - speed of light in vacuum }
\end{aligned}
$$

Frequency-domain form - looks much simpler
Monochromatic wave:

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} \rightarrow-\omega^{2} \tag{15.4}
\end{equation*}
$$

$$
\frac{\partial^{2} E_{\omega}}{\partial z^{2}}+\left(\frac{n \omega}{c}\right)^{2} E_{\omega}=\frac{\partial^{2} E_{\omega}}{\partial z^{2}}+k(\omega)^{2} E_{\omega}=\mu_{0} \frac{\partial^{2} P_{N L, \omega}}{\partial t^{2}}
$$

Time-domain formulation of nonlinear optics

Our approach: Convert the time-domain field of the form (15.1) to the frequency domain, solve (15.4) and go back to the time domain

$$
\begin{aligned}
& E(z, \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} E(z, t) e^{-i \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{a(z, t) e^{i\left(\omega_{0} t-k_{0} z\right)}\right\} e^{-i \omega t} d \omega \\
& =e^{-i k_{0} z} \frac{1}{2 \pi} \int_{-\infty}^{\infty} a(z, t) e^{-i\left(\omega-\omega_{0}\right) t} d \widetilde{\omega}=e^{-i k_{0} z} \frac{1}{2 \pi} \int_{-\Delta \omega}^{\Delta \omega} a(z, t) e^{-i \widetilde{\omega} t} d \widetilde{\omega}=A(z, \widetilde{\omega}) e^{-i k_{0} z}
\end{aligned}
$$

and now plug into (15.4)

$$
\begin{gathered}
\frac{\partial^{2}}{\partial z^{2}}\left[A(z, \widetilde{\omega}) e^{-i k_{0} z}\right]=\left(A / z z-2 i k_{0} A_{z}-k_{0}^{2} A\right) e^{-i k_{0} z} \approx\left(-2 i k_{0} A_{z}-k_{0}^{2} A\right) e^{-i k_{0} z} \\
\text { slowly varying envelope approximation (SVEA) : } \quad\left|\frac{\partial^{2} A}{\partial z^{2}}\right| \ll\left|2 k_{0} \frac{\partial A}{\partial z}\right| \ll\left|k_{0}^{2} A\right|
\end{gathered} \quad A_{z}=\frac{\partial A}{\partial z} \text { etc. }
$$

so we get $\quad\left(-2 i k_{0} \frac{\partial A}{\partial z}+\left(k^{2}-k_{0}^{2}\right) A\right) e^{-i k_{0} z}=\mu_{0} \frac{\partial^{2} P_{N L, \omega}}{\partial t^{2}}$

$$
\begin{gathered}
\left(k^{2}-k_{0}^{2}\right) \approx 2 k_{0}\left(k-k_{0}\right) \approx 2 k_{0}\left[\frac{d k}{d \omega}\left(\omega-\omega_{0}\right)+\frac{1}{2} \frac{d^{2} k}{d \omega^{2}}\left(\omega-\omega_{0}\right)^{2}+\cdots\right] \\
\left(-2 i k_{0} \frac{\partial A}{\partial z}+2 k_{0}\left[\frac{d k}{d \omega}\left(\omega-\omega_{0}\right)+\frac{1}{2} \frac{d^{2} k}{d \omega^{2}}\left(\omega-\omega_{0}\right)^{2}+\cdots\right] A\right) e^{-i k_{0} z}=\mu_{0} \frac{\partial^{2} P_{N L, \omega}}{\partial t^{2}}
\end{gathered}
$$

Time-domain formulation of nonlinear optics

Fourier Transform of the envelope function

$$
\left(\frac{\partial}{\partial z}+i \frac{d k}{d \omega}\left(\omega-\omega_{0}\right)+\frac{1}{2} i \frac{d^{2} k}{d \omega^{2}}\left(\omega-\omega_{0}\right)^{2}+\cdots\right) A\left(z, \omega-\omega_{0}\right) e^{-i k_{0} z}=\frac{i}{2 k_{0}} \mu_{0} \frac{\partial^{2} P_{N L, \omega}}{\partial t^{2}}
$$

This equation is now Fourier transformed back from the frequency domain - to the time domain:

$$
\begin{gathered}
f(t)=\mathcal{F}^{-1}\{\tilde{f}(\omega)\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{i \omega t} d \omega \\
\mathcal{F}^{-1}\{i \omega \tilde{f}(\omega)\}=\frac{d}{d t} f(t) \\
\mathcal{F}^{-1}\left\{-\omega^{2} \tilde{f}(\omega)\right\}=\frac{d^{2}}{d t^{2}} f(t)
\end{gathered}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\partial}{\partial z} A\left(z, \omega-\omega_{0}\right) e^{-i k_{0} z} e^{i \omega t} \frac{d \omega}{2 \pi}=e^{-i k_{0} z} \frac{\partial}{\partial z} \int_{-\infty}^{\infty} A\left(z, \omega-\omega_{0}\right) e^{i \omega t} \frac{d \omega}{2 \pi}=e^{i \omega_{0} t-i k_{0} z} \frac{\partial}{\partial z} \int_{-\infty}^{\infty} A\left(z, \omega-\omega_{0}\right) e^{i\left(\omega-\omega_{0}\right) t} \frac{d \omega}{2 \pi}= \\
& =e^{i \omega_{0} t-i k_{0} z} \frac{\partial}{\partial z} \underbrace{\infty}_{-\infty} A(z, \widetilde{\omega}) e^{i \widetilde{\omega} t} \frac{d \widetilde{\omega}}{2 \pi}=e^{i \omega_{0} t-i k_{0} z} \frac{\partial a(z, t)}{\partial z} \\
& \underbrace{v_{g}=\frac{1}{\beta_{1}}=\frac{d \omega}{d k}}_{\beta_{1}=\frac{d k}{d \omega}} \\
& \rightarrow e^{i \omega_{0} t-i k_{0} z}\left(\frac{d k}{d \omega}\right) \frac{\partial a(z, t)}{\partial t}=e^{i \omega_{0} t-i k_{0} z} \beta_{1} \frac{\partial a(z, t)}{\partial t} \\
& \beta_{2}=\frac{d^{2} k}{d \omega^{2}}=\frac{d}{d \omega}\left(\frac{1}{v_{g}}\right) \text { group velocity dispersion (GVD) }
\end{aligned}
$$

Time-domain formulation of nonlinear optics

Finally we get:

$$
\begin{equation*}
\frac{\partial a(z, t)}{\partial z}+\beta_{1} \frac{\partial a(z, t)}{\partial t}-\frac{i}{2} \beta_{2} \frac{\partial^{2} a(z, t)}{\partial t^{2}}=e^{-i \omega_{0} t+i k_{0} z} \mathcal{F}^{-1}\left\{\frac{i}{2 k_{0}} \mu_{0} \frac{\partial^{2} P_{N L, \omega}}{\partial t^{2}}\right\}=e^{-i\left(\omega_{0} t+k_{0} z\right)} \frac{i}{2 k_{0}} \mu_{0} \frac{\partial^{2} P_{N L}}{\partial t^{2}} \tag{15.5}
\end{equation*}
$$

In the time-domain formulation, the nonlinear polarization is also expressed in terms of a slowly varying envelope multiplied by a carrier:

$$
\begin{equation*}
P_{N L}(t, z)=\operatorname{Re}\left\{p_{N L}(z, t) e^{i\left(\omega_{0} t-k_{N L} z\right)}\right\} \tag{15.6}
\end{equation*}
$$

$$
\begin{gathered}
\frac{\partial a(z, t)}{\partial z}+\beta_{1} \frac{\partial a(z, t)}{\partial t}-\frac{i}{2} \beta_{2} \frac{\partial^{2} a(z, t)}{\partial t^{2}}=\frac{i}{2 k_{0}} \mu_{0}\left(-\omega_{0}^{2}\right) p_{N L}(z, t) e^{-i \Delta k z} \\
\frac{\partial a(z, t)}{\partial z}+\beta_{1} \frac{\partial a(z, t)}{\partial t}-\frac{i}{2} \beta_{2} \frac{\partial^{2} a(z, t)}{\partial t^{2}}=-i \frac{\mu_{0} \omega_{0} c}{2 n} p_{N L}(z, t) e^{-i \Delta k z}
\end{gathered}
$$

$$
\begin{aligned}
& \Delta k=k_{N L}-k_{0} \\
& k_{0}=\frac{\omega_{0} n}{c}
\end{aligned}
$$

$$
\frac{\partial E(z)}{\partial z}=-i \frac{\mu_{0} \omega c}{2 n} P_{N L}
$$

Time-domain formulation of NLO

Let us leave only $\frac{\partial}{\partial t}$ and ignore $\frac{\partial^{2}}{\partial t^{2}}$ term for now. What is the difference in adding the time derivative?

$$
\frac{\partial a(z, t)}{\partial z}-\frac{1}{v_{g}} \frac{\partial a(z, t)}{\partial t}=-i \frac{\mu_{0} \omega_{0} c}{2 n} p_{N L}(z, t)
$$

this looks very similar to the eq. (2.11) of L2 (monochr. waves)

$$
\frac{\partial E(z)}{\partial z}=-i \frac{\mu_{0} \omega c}{2 n} P_{N L}
$$

When $\frac{1}{v_{g}} \frac{\partial a(z, t)}{\partial t}$ becomes comparable to $\frac{\partial a(z, t)}{\partial z}$?
when $\frac{a}{v_{g} \tau} \sim \frac{a}{L}$
-> pulse spread $v_{g} \tau \sim$ crystal length L (or less)
Example: $L=1 \mathrm{~cm}, v_{g}=\frac{\mathrm{c}}{n_{g}} ; n_{g}=2$

$$
v_{g} \tau \approx \mathrm{~L} \quad->\quad \tau=\mathrm{L} / v_{g} \approx 67 p s
$$

Free pulse propagation

Once again

$$
\begin{equation*}
\frac{\partial a(z, t)}{\partial z}+\beta_{1} \frac{\partial a(z, t)}{\partial t}-\frac{i}{2} \beta_{2} \frac{\partial z a(z, t)}{\partial t^{2}}=-i \frac{\mu_{0} \omega_{0} c / p_{N L}(z, t) e^{-i \Delta k z}}{2 \text { nhenlinear polarization }} \tag{15.7a}
\end{equation*}
$$

Let us ignore the $2^{\text {nd }}$ order dispersion and assume there is no nonlinear polarization

$$
\frac{\partial a(z, t)}{\partial z}+\beta_{1} \frac{\partial a(z, t)}{\partial t}=0
$$

Moving frame: new coordinates

$$
\begin{array}{ll}
\mathrm{z}^{\prime}=\mathrm{z} ; & \frac{\partial a}{\partial z}=\frac{\partial a}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial z}+\frac{\partial a}{\partial z^{\prime}} \frac{\partial z^{\prime}}{\partial z}=\frac{\partial a}{\partial t^{\prime}}\left(-\frac{1}{v_{g}}\right)+\frac{\partial a}{\partial z^{\prime}} \\
\mathrm{t}^{\prime}=\mathrm{t}-\frac{z}{v_{g}} & \frac{\partial a}{\partial t}=\frac{\partial a}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial t}+\frac{\partial a}{\partial z^{\prime}} \frac{\partial z^{\prime}}{\partial t}=\frac{\partial a}{\partial t^{\prime}}
\end{array}
$$

chain rule of differentiation
plug into (15.8)

$$
-\frac{1}{y_{g}} \frac{\partial \not \partial}{\partial t^{\prime}}+\frac{\partial a}{\partial z^{\prime}}+\frac{1}{v_{\nexists}} \frac{\partial a}{\partial t^{\prime}}=0
$$

$$
\begin{equation*}
\text { In the moving frame } \quad \frac{\partial a\left(\mathrm{z}^{\prime}, \mathrm{t}^{\prime}\right)}{\partial \mathrm{z}^{\prime}}=0 \tag{15.9}
\end{equation*}
$$

Three-wave interaction with ultrashort pulses

Now ignore the high-order dispersion $\frac{\partial^{2}}{\partial t^{2}}$ term and leave the nonlinear polarization driving term
(from 15.7) $\frac{\partial a(z, t)}{\partial z}+\beta_{1} \frac{\partial a(z, t)}{\partial t}-\frac{i}{2} \beta_{2} \frac{\partial^{2} \nprec(z, t)}{\partial t^{2}}=-i \frac{\mu_{0} \omega_{0} c}{2 n} p_{N L}(z, t) e^{-i \Delta k z}$

$$
\begin{equation*}
\frac{\partial a(z, t)}{\partial z}+\beta_{1} \frac{\partial a(z, t)}{\partial t}=-i \frac{\mu_{0} \omega_{0} c}{2 n} p_{N L}(z, t) e^{-i \Delta k z} \tag{15.10}
\end{equation*}
$$

For example, in the difference frequency generation case, $p_{N L}(z, t)$ is created as a product of two waves (E_{3} and E_{2}) propagating at (group) velocities $v_{g 3}$ and $v_{g 2}$ so the nonlinear polarization envelope propagates as $a_{3}\left(t-\frac{z}{v_{g 3}}\right) a_{2}\left(t-\frac{z}{v_{g 2}}\right)$

Difference frequency generation with ultrashort pulses and group velocity walk-off

The input waves at ω_{3} and ω_{2} and the difference frequency field $\left(\omega_{1}\right)$ have different group velocities in the crystal. Assume nondepleted pump approximation - the field at ω_{1} remains weak compared to the input fields. With the assumption that $\Delta k=0$, the equation (15.10) becomes:

$$
\begin{equation*}
\frac{\partial a_{1}}{\partial z}+\frac{1}{v_{g 1}} \frac{\partial a_{1}}{\partial t}=-i \kappa_{1} a_{3}\left(t-\frac{z}{v_{g 3}}\right) a_{2}^{*}\left(t-\frac{z}{v_{g 2}}\right) \tag{15.11}
\end{equation*}
$$

$$
\kappa_{1}=\frac{\omega_{1} d}{n_{1} c}
$$

- NL coupling coeff.
(d -nonlinear coeff)

$$
\text { New coordinates: } \quad \mathrm{z}^{\prime}=\mathrm{z} ; \mathrm{t}^{\prime}=\mathrm{t}-\frac{z}{v_{g 1}} \quad \text { - ride with the wave } a_{1}
$$

This eliinates the $2^{\text {nd }}$ term on the left side and simplifies (15.11) to:

$$
\begin{equation*}
\frac{\partial a_{1}\left(z, t^{\prime}\right)}{\partial z}=-i \kappa_{1} a_{3}\left(t^{\prime}-\eta_{31} z\right) a_{2}^{*}\left(t^{\prime}-\eta_{21} z\right) \tag{15.12}
\end{equation*}
$$

$$
\mathrm{t}^{\prime}=0 \rightarrow \text { ride at peak of the intensity }
$$

where we have introduced:

$$
\eta_{21}=\frac{1}{v_{g 2}}-\frac{1}{v_{g 1}}=\frac{1}{c}\left(n_{g 2}-n_{g 1}\right) \quad \text { and } \quad \eta_{31}=\frac{1}{v_{g 3}}-\frac{1}{v_{g 1}}=\frac{1}{c}\left(n_{g 3}-n_{g 1}\right)
$$

Group velocity walk-off - becomes significant for ps-fs pulses

Difference frequency generation (DFG) with ultrashort pulses

The solution for the DFG wave (a_{3}, a_{2}-constant) is:

$$
\begin{equation*}
a_{1}\left(L, t^{\prime}\right)=-i \kappa_{1} \int_{0}^{L} a_{3}\left(t^{\prime}-\eta_{31} z\right) a_{2}^{*}\left(t^{\prime}-\eta_{21} z\right) d z \tag{15.13}
\end{equation*}
$$

So when either $\eta_{31} z$ or $\eta_{21} z$ reaches pulse duration $(\boldsymbol{\tau})$, the intercation between 3 waves stops.

Hence the maximum interaction length is

$L_{\text {max }} \approx \frac{c \tau}{\Delta n_{g}}$,
where $\Delta n_{g}=\max \left\{n_{g 2}-n_{g 1}, n_{g 3}-n_{g 1}\right\}$

Difference frequency generation with ultrashort pulses

DFG: $\omega_{1}=\omega_{3}-\omega_{2}$
Scenario \#1
$\lambda_{1}=10 \mu \mathrm{~m}$
$\lambda_{2}=0.83 \mu \mathrm{~m}$

Ti: Sapphire laser
$\left.\lambda_{3}=0.77 \mu \mathrm{~m}\right\}$
$n_{g 1}=2.761$
$n_{g 2}=3.098$
$n_{g 3}=3.171$
Scenario \#1
$\rightarrow \Delta n_{g}=0.41$
$L_{\text {eff }}=15 \mu \mathrm{~m}$

Scenario \#2
$\lambda_{1}=10 \mu \mathrm{~m}$
$\lambda_{2}=2.66 \mu \mathrm{~m}$
$\left.\lambda_{3}=2.1 \mu \mathrm{~m}\right\}$
Cr : ZnS laser
$n_{g 1}=2.78$
$n_{g 2}=2.76$
$n_{g 3}=2.78$
$\rightarrow \Delta n_{g}=0.02$

Scenario \#2
$L_{\text {eff }}=300 \mu \mathrm{~m}$

DFG conversion
efficiency (at the same focussing) scales as $L_{\text {eff }}{ }^{2}$ \rightarrow
400 times difference between the two scenarios

Time-domain formulation of NLO

As we discusses in L13, matching group velocities in time domain is the same as matching phase-matching bandwidths in frequency domain

