Lecture 15

Frequency conversion using ultrashort optical pulses.

Problem solving practices



Group vs phase velocity

If you do not neglect The pulse propagation velocity (also known as the group velocity v,= ¢/n,) differs from the

dispersion: propagation velocity of the carrier (also known as the phase velocity v, = ¢/n). Energy is
transported through the medium at group velocity.
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sl Let us show that a(z, t) propagates with the group velocity




Time-domain formulation of nonlinear optics

In the time-domain formulation, we express the field in terms of slowly varying envelope

multiplied by a carrier: :
E(t,z) = Re {a(z,t) e!(@ot=ko2)} (15.1)
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The Fourier transform of the envelope function is centered near ZERO frequency
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Time-domain formulation of nonlinear optics

Each spectral component propagates with its own phase velocity
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Time-domain formulation of nonlinear optics

Wave equation
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Time-domain formulation of nonlinear optics

Our approach: Convert the time-domain field of the form (15.1) to the frequency domain, solve (15.4) and go back to the time domain
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Time-domain formulation of nonlinear optics

Fourier Transform of the envelope function
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This equation is now Fourier transformed back from the frequency domain — to the time domain:
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Time-domain formulation of nonlinear optics

Finally we get:
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In the time-domain formulation, the nonlinear polarization is also expressed in terms of a slowly varying
envelope multiplied by a carrier:

Pyi(t, z) = Re {py;(z, t)e"(@ot=kn1Z) ) (15.6)
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this looks very similar to the eq. (2.11) of L2 (monochr. waves)
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Time-domain formulation of NLO

Let us leave only 6a_t and ignore ;—; term for now. What is the difference in adding the time derivative?
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For input pulses sufficiently long (>1ns), the time derivative may be neglected



Free pulse propagation

Once again: da(z, t) +
0z

Let us ignore the 2™ order dispersion and
assume there is no nonlinear polarization

Free pulse propagation: >

Moving frame: new coordinates: z' =1z
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plug into (15.8)
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In the absence of nonlinear polarization and high-order dispersion, the electric field
envelope a(z, t) would propagate at the group velocity without any distortion or change.
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Three-wave interaction with ultrashort pulses

Now ignore the high-order dispersion :—; term and leave the nonlinear polarization driving term
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For example, in the difference frequency generation case, py;(z, t) is created as a product of two
waves (E3 and E;) propagating at (group) velocities vgzand v4, so the nonlinear polarization

envelope propagates as as(t — —) a(t — =)
vg3 vgz

see A. Weiner “Ultrafast Optics” Wiley (2009), p. 240
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Difference frequency generation with ultrashort pulses and group velocity walk-off

The input waves at w; and w, and the difference frequency field (w{) have different group velocities in the crystal.
Assume nondepleted pump approximation — the field at w4 remains weak compared to the input fields. With the
assumption that Ak = 0, the equation (15.10) becomes:
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This eliinates the 2™ term on the left side and simplifies (15.11) to:
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Group velocity walk-off — becomes significant for ps-fs pulses

see A. Weiner “Ultrafast Optics” Wiley (2009), p. 240
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Difference frequency generation (DFG) with ultrashort pulses

The solution for the DFG wave

(a3, a, -constant) is: a;(L,t") = —iKlf
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So when either n3,z or n,,z reaches
pulse duration (1), the intercation
between 3 waves stops.

Hence the maximum interaction length is

CcT

Lmax = E, (15.14)

see A. Weiner “Ultrafast Optics” Wiley (2009), p. 240



Difference frequency generation with ultrashort pulses

Numerical example: DFG in GaSe crystal with fs pulses

DFG: W1 = W3 — Wy

A1 =10 ym

/12 =0.83 Hm Ti: Sapphire

A3 = 0.77 pm laser

ng, =2.761

ng, =3.098

ngs =3.171

- ATlg =O41 Leff = 15 |Jm

Assume a rectangular pulse with the pulsewidth t=20 fs

The interaction length L corresponds to:
The lag time = n,, L+ equal to the pulse duration, that is

. 1 cT
- — —

Laser spectrum

/11 =10 le

Ay = 2.66 um |
/13 —21 “m Cr: ZnS laser

ngl =2.78
ngz =2.76
ng3 =278

Lo = 300 pm
> Any =0.02 ef -

DFG conversion
efficiency (at the same
focussing ) scales as L
9

400 times difference
between the two
scenarios

v
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Time-domain formulation of NLO

As we discusses in L13, matching group
velocities in time domain is the same as
matching phase-matching bandwidths in
frequency domain
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