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Frequency conversion using ultrashort optical pulses.

Problem solving practices  

Lecture 15
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Group vs phase velocity
The pulse propagation velocity (also known as the group velocity vg= c/ng) differs from the 
propagation velocity of the carrier (also known as the phase velocity vp = c/n). Energy is 
transported through the medium at group velocity.

envelope max carrier maxenvelope 
function
a(t,z)

carrier

à Z

If you do not neglect 
dispersion:

𝐸 𝑡, 𝑧 = 𝑅𝑒	{	𝑎(𝑧, 𝑡) 𝑒!(#!$%&!')	}

Let us show that 𝑎(𝑧, 𝑡) propagates with the group velocity 
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Time-domain formulation of nonlinear optics

𝐸 𝑡, 𝑧 = 𝑅𝑒	{	𝑎(𝑧, 𝑡) 𝑒!(#!$%&!')	}

In the time-domain formulation, we express the field in terms of slowly varying envelope 
multiplied by a carrier:

envelope carrier

At z=0 𝐸 𝑡 = 𝑎 𝑡 	𝑒!"!#

𝐴!" = $
#$

$
𝑎(𝑡) 𝑒#%!"& 𝑑𝑡

𝐸 𝑡 = 𝑒+,!-𝑎(𝑡) = 𝑒+,!-(
.∆,

∆,
𝐴0, 𝑒+ 0,-

𝑑+𝜔
2𝜋 = (

.∆,

∆,
𝐴0, 𝑒+(,!10,)-

𝑑+𝜔
2𝜋 = (

,!.∆,

,!1∆,
𝐴0, 𝑒+,-

𝑑𝜔
2𝜋

𝜔 = 𝜔2 + +𝜔
(15.2)

spectral components around 0 

𝑑𝜔 = 𝑑+𝜔
+𝜔 = 𝜔 − 𝜔2

spectral components around 𝜔! 

(15.1)

The Fourier transform of the envelope function

The Fourier transform of the envelope function is centered near ZERO frequency

𝑎(𝑡) = $
#∆"

∆"
𝐴!" 𝑒% !"&

𝑑 0𝜔
2𝜋

Inverse Fourier transform 
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Time-domain formulation of nonlinear optics
Each spectral component propagates with its own phase velocity

𝑒+,- →	 𝑒+,-.+67	 𝑘 = 𝑘 𝜔 -dispersion

𝐸 𝑡, 𝑧 = (
,!.∆,

,!1∆,
𝐴0, 𝑒+(,-.6 , 7)𝑑𝜔 = (

.∆,

∆,
𝐴0, 𝑒+(,!10,)-.+(6!1∆6 , )7 𝑑+𝜔 =

!𝜔 = 𝜔 − 𝜔"𝑘 = 𝑘 𝜔 = 𝑘! +∆𝑘 𝜔 = 𝑘! +
"#
"$ (𝜔 = 𝑘! +

%$
&!

;         𝑣' =
"$
"#  Taylor expansion:

= 𝑒+(,!-.6!7)(
.∆,

∆,
𝐴0, 𝑒+(0,-.∆67) 𝑑+𝜔 = 𝑒+(,!-.6!7)(

.∆,

∆,
𝐴0, 𝑒

+(0,-. 0,8#7) 𝑑+𝜔 =

= 𝑒+(,!-.6!7) ∫.∆,
∆, 𝐴0, 𝑒

+ 0,(-. $
%#
) 
𝑑+𝜔 = 	 𝑎(𝑡 − 7

8#
)	 𝑒+(,!-.6!7)

carrier (phase)

(15.3)

envelope (amplitude)

𝑣( =
𝑑𝜔
𝑑𝑘 = (

𝑑𝑘
𝑑𝜔)

#)=
𝑐
𝑛( 𝑛( = 𝑐(

𝑑𝑘
𝑑𝜔) = 𝑐

𝑑(𝜔𝑛/𝑐)
𝑑𝜔 = 𝑛 + 𝜔

𝑑𝑛
𝑑𝜔 = 𝑛 − 𝜆

𝑑𝑛
𝑑𝜆 > 𝑛 à 𝑣B < 𝑣C (typically)

z≠0
𝐴0, → 	𝐴0, 𝑒.+67

&𝜔 = 𝜔 − 𝜔"
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Time-domain formulation of nonlinear optics

𝜕D𝐸
𝜕𝑧D −

𝑛D

𝑐D
𝜕D𝐸
𝜕𝑡D  = 𝜇2

𝜕D𝑃𝑵𝑳
𝜕𝑡D 	

Monochromatic wave:
𝑑*

𝑑𝑡* → −𝜔* 𝜕D𝐸,
𝜕𝑧D + (

𝑛𝜔
𝑐 )

D𝐸, =
𝜕D𝐸,
𝜕𝑧D + 𝑘(𝜔)D𝐸, =  𝜇2

𝜕D𝑃𝑵𝑳,𝝎
𝜕𝑡D 	 (15.4)

from Lecture 2
𝛻𝟐𝑬 − 𝜇%

𝑑&𝑫
𝑑𝑡& = 0

𝛻 = 𝑫 = 𝟎
𝛻 = 𝑩 = 0

𝛻×𝑬 = −
𝑑𝑩
𝑑𝑡

𝛻×𝑯 =
𝑑𝑫
𝑑𝑡

𝛻×

Wave equation

𝑫 = 𝑫(𝟏) + 𝑫(𝟐) = 𝜀𝑬	 + 𝑷HI

𝜕&𝐸
𝜕𝑧&

− 𝜇%
𝑑&𝐷
𝑑𝑡&

= 0 for plane wave (scalar eq.)

𝜕D𝐸
𝜕𝑧D − 𝜇2𝜀

𝑑D𝐸
𝑑𝑡D = 𝜇2

𝜕D𝑃𝑵𝑳
𝜕𝑡D 	

- speed of light in vacuum

c = (
)#*#

 

𝜀 = 𝜀! 𝑛+

same as

Frequency-domain form - looks much simpler 

wave equation 
with an external 
driving force 
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Time-domain formulation of nonlinear optics

𝐸 𝑧,𝜔 =
1
2𝜋

(
.J

J
𝐸 𝑧, 𝑡 𝑒.+,-𝑑𝜔 =

1
2𝜋

(
.J

J
{𝑎(𝑧, 𝑡) 𝑒+(,!-.6!7)} 𝑒.+,-𝑑𝜔

= 𝑒.+6!7
1
2𝜋

(
.J

J
𝑎(𝑧, 𝑡) 𝑒.+(,.,!)-𝑑+𝜔 = 𝑒.+6!7

1
2𝜋

(
.∆,

∆,
𝑎(𝑧, 𝑡)𝑒.+0,- 𝑑+𝜔 = 𝐴(𝑧, +𝜔)𝑒.+6!7

Our approach:  Convert the time-domain field of the form (15.1) to the frequency domain, solve (15.4) and go back to the time domain  

.. and now plug into (15.4)

(𝜔 = 𝜔−𝜔!

𝜕&𝐸(𝑧, 𝜔)
𝜕𝑧& + 𝑘(𝜔)&𝐸(𝑧, 𝜔) = 𝜇%

𝜕&𝑃𝑵𝑳,𝝎
𝜕𝑡&

𝜕.

𝜕𝑧. [𝐴(𝑧, !𝜔)𝑒
/01,2] = (𝐴𝑧𝑧 − 2𝑖𝑘"𝐴𝑧 − 𝑘".𝐴)𝑒/01,2 ≈ (−2𝑖𝑘"𝐴𝑧 − 𝑘".𝐴)𝑒/01,2 𝐴𝑧=

-.
-/  etc.

≈0

𝑘 𝜔 .	𝐴(𝑧, 𝜔 − 𝜔")𝑒/01,2

−2𝑖𝑘2
𝜕𝐴
𝜕𝑧 + (𝑘

D−𝑘2D)𝐴 𝑒.+6!7 = 𝜇2
𝜕D𝑃𝑵𝑳,𝝎
𝜕𝑡D

slowly varying envelope approximation (SVEA) :

(𝑘*−𝑘,*) ≈ 2𝑘,(𝑘 − 𝑘,) ≈ 2𝑘,[
𝑑𝑘
𝑑𝜔 𝜔 − 𝜔, +

1
2
𝑑*𝑘
𝑑𝜔* 𝜔 − 𝜔, * +⋯]

so we get

−2𝑖𝑘2
𝜕𝐴
𝜕𝑧 + 2𝑘2[

𝑑𝑘
𝑑𝜔 𝜔 − 𝜔2 +

1
2
𝑑D𝑘
𝑑𝜔D 𝜔 − 𝜔2 D +⋯]𝐴 𝑒.+6!7 = 𝜇2

𝜕D𝑃𝑵𝑳,𝝎
𝜕𝑡D

𝐴 = 𝐴(𝑧, 𝜔 − 𝜔,)
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Time-domain formulation of nonlinear optics

𝜕
𝜕𝑧 + 𝑖

𝑑𝑘
𝑑𝜔 𝜔 − 𝜔2 +

1
2 𝑖

𝑑D𝑘
𝑑𝜔D 𝜔 − 𝜔2 D +⋯ 𝐴(𝑧, 𝜔 − 𝜔2)𝑒.+6!7 =

𝑖
2𝑘2

𝜇2
𝜕D𝑃𝑵𝑳,𝝎
𝜕𝑡D

Fourier Transform of the envelope  function

This equation is now Fourier transformed back from the frequency domain – to the time domain: 

𝑓 𝑡 = ℱ.U Q𝑓 𝜔 =
1
2𝜋(.J

J
Q𝑓 𝜔 	𝑒+,-	𝑑𝜔

Recall (2.3) from L2 ℱ#)	{𝒊𝝎 Z𝑓(𝜔)} =
𝑑
𝑑𝑡 𝑓 𝑡

ℱ#)	{−𝝎𝟐 Z𝑓(𝜔)} =
𝑑*

𝑑𝑡* 𝑓 𝑡

∫.J
J ]

]7
𝐴(𝑧, 𝜔 − 𝜔2)𝑒.+6!7 𝑒+,-

^,
D_
= 𝑒.+6!7 ]

]7
 ∫.J
J 𝐴(𝑧, 𝜔 − 𝜔2)	 𝑒+,-

^,
D_
= 𝑒+,!-.+6!7 ]

]7
 ∫.J
J 𝐴(𝑧, 𝜔 − 𝜔2)	 𝑒+(,.,!)-

^,
D_
=

= 𝑒+,!-.+6!7 ]
]7

 ∫.J
J 𝐴(𝑧, ,𝜔)	 𝑒+ 0,- ^ 0,

D_
= 𝑒+,!-.+6!7 ]`(7,-)

]7

𝑎(𝑧, 𝑡)

→ 	 𝑒+,!-.+6!7
𝑑𝑘
𝑑𝜔

𝜕𝑎(𝑧, 𝑡)
𝜕𝑡 = 	 𝑒+,!-.+6!7 𝛽U

𝜕𝑎(𝑧, 𝑡)
𝜕𝑡

→ 	 𝑒+,!-.+6!7 −
1
2
𝑖

𝑑D𝑘
𝑑𝜔D

𝑑D𝑎(𝑧, 𝑡)
𝑑𝑡D

=	 𝑒+,!-.+6!7	 (−
𝑖
2
𝛽D)

𝑑D𝑎(𝑧, 𝑡)
𝑑𝑡D

𝑣' =
(
0%
= "$

"# 

𝛽+	=
"&#
"$& =

"
"$ 	(

(
&!
)  group velocity dispersion (GVD)

𝛽! =
𝑑𝑘
𝑑𝜔
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Time-domain formulation of nonlinear optics

𝜕𝑎 𝑧, 𝑡
𝜕𝑧 + 𝛽'

𝜕𝑎 𝑧, 𝑡
𝜕𝑡 −

𝑖
2 𝛽&

𝜕2𝑎 𝑧, 𝑡
𝜕𝑡2 = −𝑖

𝜇%𝜔0𝑐
2𝑛 𝑝() 𝑧, 𝑡 𝑒*!∆,-

./ -,#
.- + 𝛽'

./ -,#
.# − !

&𝛽&
.*/ -,#
.#* =	 𝑒*!"!#1!,!- ℱ*' !

&,!
𝜇%

.3b𝑵𝑳,𝝎
.#3 =	 𝑒*!("!#1,!-) !

&,!
𝜇%

.34𝑵𝑳
.#3

𝑃𝑵𝑳 𝑡, 𝑧 = 𝑅𝑒	{𝑝+, 𝑧, 𝑡 𝑒!(#!$%&cd')	}

In the time-domain formulation, the nonlinear polarization is also expressed in terms of a slowly varying 
envelope multiplied by a carrier:

𝜕𝑎 𝑧, 𝑡
𝜕𝑧 + 𝛽'

𝜕𝑎 𝑧, 𝑡
𝜕𝑡 −

𝑖
2 𝛽&

𝜕2𝑎 𝑧, 𝑡
𝜕𝑡2 =

𝑖
2𝑘%

𝜇%(−𝜔%&)𝑝() 𝑧, 𝑡 𝑒*!∆,-	 ∆𝑘 = 𝑘67 − 𝑘!

𝑘, =
𝜔0𝑛
𝑐

Finally we get:

but what are these terms?
this looks very similar to the eq. (2.11) of L2 (monochr. waves)

.5(-)
.-

	=−𝑖 6!"7
&8

 𝑃𝑁𝐿

(15.5)

(15.6)

(15.7)
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Time-domain formulation of NLO 

For input pulses sufficiently long (>1ns), the time derivative may be neglected

𝜕𝑎 𝑧, 𝑡
𝜕𝑧 +

1
𝑣9
𝜕𝑎 𝑧, 𝑡
𝜕𝑡 = −𝑖

𝜇%𝜔0𝑐
2𝑛 𝑝() 𝑧, 𝑡

this looks very similar to the eq. (2.11) of L2 (monochr. waves)

-.(')
-' 	=−𝑖 /!#012  𝑃𝑁𝐿

𝜕𝑎
𝜕𝑡 ~

𝑎
𝜏	

Let us leave only ]]- and ignore ]
+

]-+ term for now. What is the difference in adding the time derivative?

L

𝜕𝑎
𝜕𝑧 ~

𝑎
𝐿	

When U8#
]` 7,-
]-   becomes comparable to ]` 7,-

]7   ?

when   `8#g ~
`
I  

->  pulse spread 𝑣B𝜏  ~ crystal length L (or less)

𝑣B𝜏

Example: L=1 cm, 𝑣B =
h
i#
; 	𝑛B = 2

𝑣B𝜏 ≈ L	 ->      𝜏 = Yj 8# ≈ 67𝑝𝑠
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Free pulse propagation
𝜕𝑎 𝑧, 𝑡
𝜕𝑧 + 𝛽'

𝜕𝑎 𝑧, 𝑡
𝜕𝑡 −

𝑖
2 𝛽&

𝜕2𝑎 𝑧, 𝑡
𝜕𝑡2 = −𝑖

𝜇%𝜔0𝑐
2𝑛 𝑝() 𝑧, 𝑡 𝑒*!∆,-Once again:

term for pulse broadening

𝜕𝑎 𝑧, 𝑡
𝜕𝑧 + 𝛽U

𝜕𝑎 𝑧, 𝑡
𝜕𝑡 = 0

Free pulse propagation: 𝜕𝑎(𝑧, 𝑡)
𝜕𝑧 +

1
𝑣B
𝜕𝑎(𝑧, 𝑡)
𝜕𝑡 = 0

t

z

z3 = z;	
t3 = t −

𝑧
𝑣4

Moving frame: new coordinates: 𝜕𝑎
𝜕𝑧 =

𝜕𝑎
𝜕𝑡′

𝜕𝑡′
𝜕𝑧 +

𝜕𝑎
𝜕𝑧′

𝜕𝑧′
𝜕𝑧 =

𝜕𝑎
𝜕𝑡. (−

1
𝑣(
) +

𝜕𝑎
𝜕𝑧′

𝜕𝑎
𝜕𝑡 =

𝜕𝑎
𝜕𝑡′

𝜕𝑡′
𝜕𝑡 +

𝜕𝑎
𝜕𝑧′

𝜕𝑧′
𝜕𝑡 =

𝜕𝑎
𝜕𝑡.

−
1
𝑣B
𝜕𝑎
𝜕𝑡m +

𝜕𝑎
𝜕𝑧′ +

1
𝑣B
𝜕𝑎
𝜕𝑡′ = 0

𝜕𝑎(zm, tm)
𝜕zm = 0 (15.9)In the moving frame

In the absence of nonlinear polarization and high-order dispersion, the electric field 
envelope a(z, t) would propagate at the group velocity without any distortion or change.

à

plug into (15.8)

chain rule of 
differentiation

(15.7a)

(15.8)

nonlinear polarization

Let us ignore the 2nd order dispersion and 
assume there is no nonlinear polarization   
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Three-wave interaction with ultrashort pulses

see A. Weiner “Ultrafast Optics” Wiley (2009), p. 240

𝜕𝑎 𝑧, 𝑡
𝜕𝑧 + 𝛽'

𝜕𝑎 𝑧, 𝑡
𝜕𝑡 −

𝑖
2 𝛽&

𝜕2𝑎 𝑧, 𝑡
𝜕𝑡2 = −𝑖

𝜇%𝜔0𝑐
2𝑛 𝑝() 𝑧, 𝑡 𝑒*!∆,-(from 15.7)

𝜕𝑎 𝑧, 𝑡
𝜕𝑧 + 𝛽'

𝜕𝑎 𝑧, 𝑡
𝜕𝑡 = −𝑖

𝜇%𝜔0𝑐
2𝑛 𝑝() 𝑧, 𝑡 𝑒*!∆,- (15.10)

For example, in the difference frequency generation case, 𝑝HI 𝑧, 𝑡  is created as a product of two 
waves (E3 and E2) propagating at (group) velocities 𝑣Bnand 𝑣BD so the nonlinear polarization 
envelope propagates as 𝑎n(𝑡 −

7
8#5
) 𝑎D(𝑡 −

7
8#6
) 

Now ignore the high-order dispersion ]
+

]-+ term and leave the nonlinear polarization driving term 
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Difference frequency generation with ultrashort pulses and group velocity walk-off 
The input waves at ω3 and ω2 and the difference frequency field (ω1) have different group velocities in the crystal. 
Assume nondepleted pump approximation – the field at ω1 remains weak compared to the input fields. With the 
assumption that Δk = 0, the equation (15.10) becomes:

𝜕𝑎3
𝜕𝑧 +

1
𝑣43

𝜕𝑎3
𝜕𝑡 = −𝑖𝜅3𝑎5(𝑡 −

𝑧
𝑣45

) 𝑎1∗(𝑡 −
𝑧
𝑣41

) (15.11)

zm = z;	 tm = t −
𝑧
𝑣BU

New coordinates: – ride with the wave 𝑎U

t. = 0 → ride	at	peak	of	the	intensity

see A. Weiner “Ultrafast Optics” Wiley (2009), p. 240

𝜅U =
𝜔U𝑑
𝑛U𝑐

- NL coupling coeff.
(d -nonlinear coeff)

This eliinates the 2nd term on the left side and simplifies (15.11) to: 

𝜕𝑎3(𝑧, 𝑡7)
𝜕𝑧 = −𝑖𝜅3𝑎5(𝑡′ − 𝜂53𝑧) 𝑎1∗(𝑡′ − 𝜂13𝑧)

where we have introduced: 𝜂nU =
U
8#5

− U
8#7

= U
}
(𝑛Bn-𝑛BU)and 𝜂DU =

U
8#6

− U
8#7

= U
} (𝑛BD-𝑛BU)

(15.12)

Group velocity walk-off –  becomes significant for ps-fs pulses
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Difference frequency generation (DFG) with ultrashort pulses

The solution for the DFG wave 
(𝑎n, 𝑎D -constant) is: 𝑎U 𝐿, 𝑡m = −𝑖𝜅U(

2

I
𝑎n 𝑡m − 𝜂nU𝑧  𝑎D∗ 𝑡m − 𝜂DU𝑧 	 𝑑𝑧 (15.13)

z=0                     z1                    z2

ω1

ω2

ω3

So when either 𝜂nU𝑧 or 𝜂DU𝑧 reaches 
pulse duration (𝝉), the intercation 
between 3 waves stops.

Hence the maximum interaction length is  

𝐿�`� ≈
}g
�i#

, 

where  𝛥𝑛B =max {𝑛BD-𝑛BU, 𝑛Bn-𝑛BU}

ride with 𝑎( pulse

see A. Weiner “Ultrafast Optics” Wiley (2009), p. 240

(15.14)
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Difference frequency generation with ultrashort pulses
Numerical example: DFG in GaSe crystal with fs pulses

DFG:  𝝎𝟏 = 𝝎𝟑 −𝝎𝟐

Scenario #1
𝜆U =10 µm
𝜆D = 0.83 µm
𝜆n = 0.77 µm
𝑛BU =2.761
𝑛BD =3.098
𝑛Bn =3.171
→ Δ𝑛B =0.41

Scenario #2
𝜆U =10 µm
𝜆D = 2.66 µm
𝜆n = 2.1 µm
𝑛BU =2.78
𝑛BD =2.76
𝑛Bn =2.78
→ Δ𝑛B =0.02

Assume a rectangular pulse with the pulsewidth 𝜏=20 fs

The interaction length Leff corresponds to:
The lag time = 𝜂DULeff equal to the pulse duration, that is

lag time: U} Δ𝑛BLeff = 𝜏	 → 	 Leff =
𝒄𝝉
𝜟𝒏𝒈

       

Ti: Sapphire 
laser

Cr: ZnS laser

Scenario #1   
 Leff = 15 µm

Scenario #2    
Leff = 300 µm

DFG conversion 
efficiency (at the same 
focussing ) scales as Leff

2

à
400  times difference 
between the two 
scenarios

Laser spectrum
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Time-domain formulation of NLO 

As we discusses in L13, matching group 
velocities in time domain is the same as 
matching phase-matching bandwidths in 
frequency domain 


