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Third-order nonlinear susceptibility Χ(3) and its tensor. 

Third-order nonlinearity due to:  fast electronic response, molecular re-orientation, 

electrostriction, thermal effects. 

Lecture 16
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χ(3) nonlinear susceptibility

Formal definition of the nonlinear polarization:

see (5.1)

Two-photon Absorption 
Nonlinear Refraction
Cross-phase modulation

3rd harmonic generation 
Four-wave mixing

Stimulated Raman scattering 
Stimulated Brillouin scattering
Phase conjugation

χ(3)

𝑃 ! 𝑡 = 𝜒 ! 𝐸!(𝑡) (16.1) 
ignoring 

dispersion of 𝜒 !  
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Linear  χ(1) Tensor

Recall linear media: 

3x3=9 elements
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Nonlinear χ(2) Tensor

Recall quadratic media: 

𝑃!
(#) = 𝜖%$

&,(,)

𝜒!&(𝐸&𝐸( 3x3x3=27 elements

à  reduced to 18 elements
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Nonlinear  χ(3) – Fourth rank tensor

𝑃!
(*) = 𝜖%$

&,(,)

𝜒!&()𝐸&𝐸(𝐸) 3x3x3x3=81 elements

𝜔! = ±𝜔" ± 𝜔# ± 𝜔$

(Stegeman)strictly speaking, 𝜒!&() = 𝜒!&()(−𝜔., 𝜔/, 𝜔#, 𝜔*)

𝐸% =
"
#𝐸% 𝜔% 𝑒

&'!( + 𝑐. 𝑐. 
𝐸) =

"
#𝐸) 𝜔) 𝑒

&'"( + 𝑐. 𝑐.  
𝐸* =

"
#𝐸* 𝜔* 𝑒

&'#( + 𝑐. 𝑐.  

No symmetry restrictions: χ(3) ≠0  in any material (even vacuum!) 

Cubic nonlinearity media: 
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Symmetry properties of third-order 
susceptibilities
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because, for example, χ would give the response in the x direction due to a field applied in the y 

χ1223 à xyyz

The symmetry properties of a material can reduce the number of χ(3)  elements drastically.

Why χ(3)
1223, is zero in isotropic media?

An index cannot appear an odd number of times in isotropic media 

x

y

z

x’

y’

z’ 𝑃+	~𝜒"##$
($) 	𝐸.#𝐸/~𝜒+../

($) 	𝐸.#𝐸/

In a coordinate system, which is  
rotated by 180 deg around z-axis:
x’=-x; y’=-y; z’=z   we get

assume 𝐸$ = 1,	 𝐸%= 1,   

𝑃&	~𝜒&$$%
(() 	𝐸$*𝐸% = 𝜒&$$%

(() ×1×1×1 = 1×𝜒&$$%
(()

then

𝑃&+	~𝜒&+$+$+%+
(() 	𝐸$+* 𝐸%+ = 𝜒&$$%

(() 	𝐸$+* 𝐸%+ == 𝜒&$$%
( ×(−1)×(−1)×1 = 1×𝜒&$$%

(()

The result is that in the vector space 

Hence χ(3)xyyz=χ(3)1223=0

𝑷,- = −𝑷,-
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χ1222 à xyyy

The symmetry properties of a material can reduce the number of χ(3)  elements drastically.

Why χ(3)
1222, is zero in isotropic media?

An index cannot appear an odd number of times in isotropic media 

x
z

y 𝑃+	~𝜒"###
($) 	𝑃.$~𝜒+...

($) 	𝑃.$

In a coordinate system, which is  
rotated by 180 deg around y-axis:
x’=-x; y’=y; z’=-z   we get

assume 𝐸$ = 1  

𝑃&	~𝜒&$$$
(() 	𝐸$( = 𝜒&$$$

(() 𝑥1𝑥1𝑥1 = 1𝜒&$$$
(()

then

𝑃&+	~𝜒&"$"$"$+
(() 	𝐸$+( = 𝜒&$$$

(() 	𝐸$+( == 𝜒&$$$
( 𝑥1𝑥1𝑥1 = 1𝜒&$$$

(()

The result is that in the vector space 

Hence χ(3)xyyy=χ(3)1222=0

x’
z
’

y’

𝑷,- = −𝑷,- for isotropic material, tensor 
elements should not depend on 
a system of coordinates



9

Another argument:  χ1222 would give the response in the x direction due to a field 
applied in the y direction. This response must vanish in an isotropic material, because 
there is no reason why the response should be in the +x direction rather than in the −x 
direction.

χ1222 à xyyy à 0 x

y

𝑃9 	~	𝐸:*

Symmetry properties of a material can reduce the number of χ(3)  elements drastically.
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An index cannot appear an odd 
number of times in isotropic media 
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χ(3) Tensor.  Isotropic Media. 

In an isotropic medium, all coordinate systems are equivalent. 
Therefore in terms of the subscripts ijkl , for the nonlinear coefficients we have:

xxxx =yyyy=zzzz 
yyzz=yyxx=xxzz=xxyy=zzxx=zzyy
xyyx=xzzx=yxxy=yzzy=zxxz=zyyz
xyxy=xzxz=yxyx=yzyz=zxzx=zyzy 

same as:

The symmetry properties of a material can reduce the number of elements.

No 
distinction 
between 
x, y, and z

No 
distinction 
between 
1, 2, and 3

simple case, all polarizations are parallel 𝑃!	~	𝐸!"	 𝑒𝑡𝑐.
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χ(3) Tensor. Any Media (even crystals)

3x3x3x3=81 element
à

21 element
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χ(3) Tensor
We can further reduce the number of independent elements in isotropic media. 

Any arbitrary rotation of a coordinate system must lead to the same resulting nonlinear polarization for the 
given input field directions. 

Assume the general case of three parallel input fields E1, E2, and E3 copolarized along  x-axis, 
with different frequencies that produce the nonlinear polarization 𝑃&

(() also along  x-axis
  

𝑃+
($) = 𝜖0𝜒++++𝐸"𝐸#𝐸$

Now consider a new coordinate system ( x’, y’ ) rotated 45º from the original in the xy plane. 

The three input fields have the following components along the x’-axis and the y’-axis:

𝐸#!$ =
#
%𝐸#;  𝐸#&$ =

#
%𝐸#;  

𝐸%!$ =
#
%𝐸%;  𝐸%&$ =

#
%𝐸%;  

𝐸"!$ =
#
%𝐸";  𝐸"&$ =

#
%𝐸";  

x

x’

y’ 𝑬𝟏𝑬𝟐𝑬𝟑

45º 

𝑷𝒙
(𝟑)

𝜒#### is the only tensor component that ‘works’ 
since all y and z components are zero (16.2)
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χ(3) Tensor

x

x’

y’ 𝑬𝟏𝑬𝟐𝑬𝟑

45º 

Now, it is clear that the nonlinear polarization vector 𝑷(() - should be the same in a new system.

Also, for isotropic material, tensor elements should not depend on a system of coordinates:

𝜒++++
($) = 𝜒+1+1+1+1

($)

𝜒++..
($) = 𝜒+1+1.1.1

($)

𝜒+..+
($) = 𝜒+1.1.1+1

($)

𝜒+.+.
($) = 𝜒+1.1+1.1

($)

In a new system of coordinates (now we need to use 4 tensor components):

𝑃!$
(") = 𝜖)[𝜒!$!$!$!$

(") 𝐸#!$𝐸%!$𝐸"!$+𝜒!$!$&$&$
(") 𝐸#!$𝐸%&$𝐸"&$

	 +𝜒!$&$&$!$
(") 𝐸#&$𝐸%&$𝐸"!$+𝜒!$&$!$&$

(") 𝐸#&$𝐸%!$𝐸"&$]=

= 𝜖)[𝜒!!!!
(") 𝐸#!$𝐸%!$𝐸"!$+𝜒!!&&

(") 𝐸#!$𝐸%&$𝐸"&$

	 +𝜒!&&!
(") 𝐸#&$𝐸%&$𝐸"!$+𝜒!&!&

(") 𝐸#&$𝐸%!$𝐸"&$]=
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χ(3) Tensor

x

x’

y’ 𝐸2𝐸*𝐸(

45º 

= 𝜖)[𝜒!!!!
(") 𝐸#!$𝐸%!$𝐸"!$+𝜒!!&&

(") 𝐸#!$𝐸%&$𝐸"&$

	 +𝜒!&&!
(") 𝐸#&$𝐸%&$𝐸"!$+𝜒!&!&

(") 𝐸#&$𝐸%!$𝐸"&$]=

= 𝜖)
1
2 2

[𝜒!!!!
(") + 𝜒!!&&

(") + 𝜒!&&!
(") +𝜒!&!&

(") ]𝐸#𝐸%𝐸"

In exactly the same way:

𝑃&$
(") = 𝜖)

1
2 2

[𝜒!!!!
(") + 𝜒!!&&

(") + 𝜒!&&!
(") +𝜒!&!&

(") ]𝐸#𝐸%𝐸"

By projecting 𝑃$+
(() and 𝑃$+

(() to the ‘old’ x-axis, we get :

𝑃$+
(()

𝑃&+
(()

𝑃&
(()

𝑃!
(") = #

%
(𝑃!$

(")+𝑃&$
("))= 𝜖)2

#
% %

#
%
[𝜒!!!!

(") + 𝜒!!&&
(") + 𝜒!&&!

(") +𝜒!&!&
(") ]𝐸#𝐸%𝐸"

= 𝜖)
1
2 [𝜒!!!!

(") + 𝜒!!&&
(") + 𝜒!&&!

(") +𝜒!&!&
(") ]𝐸#𝐸%𝐸" (16.3)
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χ(3) Tensor
By comparing 𝑃&

(() obtained by two different ways, (16.2) and (16.3), that is in two coordinate systems, we get this  
relation between the third-order susceptibilities :

1
2 [𝜒!!!!

(") + 𝜒!!&&
(") + 𝜒!&&!

(") + 𝜒!&!&
(") ] = 𝜒!!!!

(")

à 𝜒++++
($) = 𝜒++..

($) + 𝜒+..+
($) + 𝜒+.+.

($)

(16.4)
same as 𝜒""""

($) = 𝜒""##
($) + 𝜒"##"

($) + 𝜒"#"#
($)

And all permutations of x-y-z, e.g. 1111à 2222à 3333 etc.

(16.5)
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χ(3) Tensor

These are universal relation for isotropic media – true for any set of input frequencies, on or off resonance. 

The number of independent elements is reduced to 3 – true for all isotropic media, including liquids, gases 
of molecules or electrons. 

In the case of Kleinman symmetry (optical frequencies are well below resonances) permutation 
symmetry applies:    ijkl à jikl à ijlk à ikjl ... etc...       

And we get:

𝜒2233
(4) = 𝜒2332

(4) = 𝜒2323
(4) =

1
3𝜒2222

(4) (16.5)

only 1 tensor element is independent
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χ(3) Tensor: crystals

For GaAs  crystal (<43m symmetry, cubic crystal) only 4 tensor elements are independent

𝑥𝑥𝑥𝑥	 = 	𝑦𝑦𝑦𝑦 = 	𝑧𝑧𝑧𝑧	

𝑦𝑦𝑧𝑧 = 	𝑧𝑧𝑥𝑥	 = 	𝑥𝑥𝑦𝑦 = 	𝑧𝑧𝑦𝑦 = 	𝑥𝑥𝑧𝑧 = 	𝑦𝑦𝑥𝑥	

𝑦𝑧𝑧𝑦 = 	𝑧𝑥𝑥𝑧 = 	𝑥𝑦𝑦𝑥 = 	𝑧𝑦𝑦𝑧 = 	𝑥𝑧𝑧𝑥 = 	𝑦𝑥𝑥𝑦

𝑦𝑧𝑦𝑧 = 	𝑧𝑥𝑧𝑥 = 	𝑥𝑦𝑥𝑦 = 	𝑧𝑦𝑧𝑦 = 	𝑥𝑧𝑥𝑧 = 	𝑦𝑥𝑦𝑥	
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Examples of third-order processes

Intensity- dependent refraction index
is the most typical manifestation of 

χ(3) effects 
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Recall Lecture 3

Χ(3) due to fast electronic response
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Χ(3) due to fast nonresonant electronic response (e.g. alkali metal vapors) 
Nonresonant electronic nonlinearities occur as the result of the nonlinear response of 
bound electrons to an applied optical field. This nonlinearity usually
is not particularly large  but is of considerable importance because it is present in all 
dielectric materials.

The third-order susceptibility describing the nonlinear refractive index can be described 
using the laws of quantum mechanics and a 4-level model system.

ν

m

n

g

transition dipole momenta
ωσ = ωp + ωq + ωr

The 24 permutations denoted by the operator PF are:
(ωσ , ωp , ωq , ωr)
(ωσ , ωp , ωr , ωq)
(ωσ , ωq , ωp , ωr)
(ωσ , ωq , ωr , ωp)
(ωσ , ωr , ωp , ωq)
(ωσ , ωr , ωq , ωp)

(ωp , ωσ , ωq , ωr)
(ωp , ωσ , ωr , ωq)
(ωp , ωq , ωσ , ωr)
(ωp , ωq , ωr , ωσ)
(ωp , ωr , ωσ , ωq)
(ωp , ωr , ωq , ωσ) 

.....

.....

.....

.....

.....

.....
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Χ(3) due to molecular re-orientation
Liquids that are composed of anisotropic molecules (i.e., molecules having an anisotropic 
polarizability tensor) typically possess a large value of n2. Example: CS2 molecule. The 
origin of this nonlinearity is the tendency of molecules to become aligned in the electric field 
of an applied optical wave. The optical wave then experiences a modified value of the 
refractive index because the average polarizability per molecule has been changed by the 
molecular alignment.

α - polarizability

This torque is directed in such a manner as to twist the molecule into alignment with the applied electric field.

CS2 

E E
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Χ(3) due to electrostriction
Liquid is sucked in between the plates of a charged capacitor
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Χ(3) due to electrostriction

Consider an electrical capacitor with two parallel 
plates. When an electric field is applied, charges 
are induced on the plates with opposite signs on 
opposite plates. Due to the presence of the 
positive and negative charges, there is a 
compressive force squeezing the medium 
that produces a strain field. This results in a 
material contraction and hence change in the 
refractive index.

Another effect is that a dielectric will be 
sucked into a capacitor because it 
reduces the total energy 
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Χ(3) due to electrostriction

Intense beam

The effect is ~ E2
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Χ(3) due to thermal effects
Thermal processes can lead to large nonlinear optical effects. The origin of thermal nonlinear optical effects is that some 
fraction of the incident laser power is absorbed in passing through an optical material. The temperature of the illuminated 
portion of the material consequently increases, which leads to a change in the refractive index of the material. For gases, 
the refractive index invariably decreases with increasing temperature (at constant pressure), but for condensed matter the 
refractive index can either increase or decrease with changes in temperature.

The time scale for changes in the temperature of the material can be quite long (of the order of seconds), and consequently 
thermal effects often lead to strongly time-dependent nonlinear optical phenomena.

Temperature gradient

beam


