Lecture 16

Third-order nonlinear susceptibility X®) and its tensor.
Third-order nonlinearity due to: fast electronic response, molecular re-orientation,

electrostriction, thermal effects.



X®) nonlinear susceptibility

Formal definition of the nonlinear polarization:

P(t)y=e[xVE@® + xPE* (1) ] see (5.1)
=PV + PP+ PV + -+
cisporsion of X PBI(t) = yBE3(t) (16.1)
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Two-photon Absorption
Nonlinear Refraction
Cross-phase modulation

3" harmonic generation
Four-wave mixing

Stimulated Raman scattering
Stimulated Brillouin scattering
Phase conjugation




Linear x(") Tensor

Recall linear media:

Linear susceptibility is a tensor P =¢ XE~ 3X3=9 elementS
vector tensor vector
P, Xzzx Xzy Xzz E,
P, = ¢ E XijE; or Pyl =co| xoo X Xu= || By
jE{iIJ,y,Z} Pz Xzz  Xzy Xzz Ez

In an anisotropic medium, such as a crystal, the polarisation field P is not necessarily aligned with the electric field of
the light E. In a physical picture, this can be thought of as the dipoles induced in the medium by the electric field having
certain preferred directions, related to the physical structure of the crystal.

In nonmagnetic and transparent materials, Xij = Xjip i.e. the y tensor is real and symmetric.

It is possible to diagonalise the tensor by choosing the appropriate coordinate axes, leaving only .., x,, and x,.
This gives :

Pz - 60X:E:L'E:L’
Py = eoxyy By

Pz = EOXzzEz




Nonlinear x(? Tensor

Recall quadratic media:

Pl-(z) = €g 2 XijkEjEx 3x3x3=27 elements
J okl

- reduced to 18 elements



Nonlinear x©) — Fourth rank tensor

Cubic nonlinearity media:

3
Pi( ) = ¢, z Xijk EjEx Eq

Jkl

3Ix3x3x3=81 elements

No symmetry restrictions: x®) #0 in any material (even vacuum!)

strictly speaking,

Wy = Twg T wy; T w3

Xijki = Xijki(—Wy, W1, Wy, W3) (Stegeman)

Ej = %Ej(w]-)ei“)it + c.c.
1

Ek = EEk((x)k)eiwkt + c.c.

E, =~

= EEl(wl)ei“’lt + c.c.




Symmetry properties of third-order
susceptibilities



The symmetry properties of a material can reduce the number of x(3) elements drastically.

Why x©),,.4, is zero in isotropic media?

3 3
z z P ~X§2)23 E)21E2~X9(cy)yz E32,EZ
y
| fe g X1223 2 XYYZ
P X X
Ve ,

assume £, = 1, E,= 1, _ o
In a coordinate system, which is

rotated by 180 deg around z-axis:
X'=-X; y'’=-y; 2=z we get

then

) g2 (3) (3)
P, ~ EJE, = X1X1x1 =1X
x ~X xyyz ByLtz X Xyyz X xXyyz (3) (3) 3) (3)

le ~Xxryryrzi E_’)ZIIEZI = Xxyyz E}%IEZI —= Xxyyzx(_l)x(_l)X1 = 1xXxyyz

The result is that in the vector space Py, = —Py;

Hence X®yyy=X®)1223=0

An index cannot appear an odd number of times in isotropic media



The symmetry properties of a material can reduce the number of x(3) elements drastically.

Why x©),,.,, is zero in isotropic media?

(3) (3)
y y’ Py ~X1222 Pys"')(xyyy Pyg
E, E,
7 J
z X1200 =2 XYYY

X ,
z n X

assume E), =1 _ o
In a coordinate system, which is

rotated by 180 deg around y-axis:
X'=-X; y'=y; Z=-z we get

then

(3) 3 (3) (3)
P, ~ E> = x1lx1lx1 =1
x ~Xxyyy By = Xxyyy Xxyyy 3) 3) (3) 3)

3 _ 3 __ _
Py, ~Xa'y'ylyi Eyr = Xxyyy Eyr == XayyyX1x1x1 = 1),

The result is that in the vector space PNL‘Z_PNL\ for isotropic material, tensor

elements should not depend on
a system of coordinates

Hence )((3)xyyy=)((3)1222=0

An index cannot appear an odd number of times in isotropic media



Symmetry properties of a material can reduce the number of x® elements drastically.

Another argument: ¥1200 would give the response in the x direction due to a field
applied in the y direction. This response must vanish in an isotropic material, because

there is no reason why the response should be in the +x direction rather than in the —x
direction.

-

P, ~ E3

v
P

X1222 2 Xyyy 2 O




An index cannot appear an odd
number of times in isotropic media



X® Tensor. Isotropic Media.

The symmetry properties of a material can reduce the number of elements.

In an isotropic medium, all coordinate systems are equivalent.
Therefore in terms of the subscripts ijkl , for the nonlinear coefficients we have:

simple case, all polarizations are parallel Px ~ E}? etc.

0000 XXXX =yYyyy=zz77 NG
@0 0O YYZZZYYXX=XXZZ=XXYY=2ZXX=22YY distinction
el I JO XYYX=XZZX=YXXY=YZZY=ZXXZ=2YYyZ between
Ce0® XYXY=XZXZ=YXYX=YZYZ=ZXZX=ZYyZY X, Y, and z
X1111 = X2222 = X3333, No
X1122 = X1133 = X2211 = X2233 = X3311 = X3322, distinction
same as: between
X1212 = X1313 = X2323 = X2121 = X3131 = X3232, 1,2, and 3

X1221 = X1331 = X2112 = X2332 = X3113 = X3223-



X®) Tensor. Any Media (even crystals)

3x3x3x3=81 element

9

21 element

12



x3) Tensor

We can further reduce the number of independent elements in isotropic media.

Any arbitrary rotation of a coordinate system must lead to the same resulting nonlinear polarization for the
given input field directions.

Assume the general case of three parallel input fields E4, E5, and E3; copolarized along x-axis,
with different frequencies that produce the nonlinear polarization Px(g) also along x-axis

Xxxxx 1S the only tensor component that ‘works’
since all y and z components are zero

3
P = €0 xxuxsEr1EEs (16.2)

Now consider a new coordinate system ( x', y’ ) rotated 45° from the original in the xy plane.

The three input fields have the following components along the x’-axis and the y’-axis:

1 : 1 . y (3)
Elx/ = \/_EEI! Ely’ — \/_EEl, x Px

1 " 1 .
Erpr = \/_EEZ’ EZyI = \/_EEZ,

1 1 )
Esy = \/_§E3; E3y/ = \/_EES; 45 X’
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x3) Tensor

Now, it is clear that the nonlinear polarization vector P - should be the same in a new system.

Also, for isotropic material, tensor elements should not depend on a system of coordinates:

e _ 03
Xoxxx = Xxrxrxrxr
@k _ 0
Xxxyy — Xxlxry/y/
3 _ 0
Xxyyx - Xxlylylxl
3 _ 0
Xxyxy - Xxlylxlyl ,
y E.E;E;
In a new system of coordinates (now we need to use 4 tensor components): x
3 3 3
Px(l) = €o [X)(c/y)c/xlxlElxlEZXIE3xl+X9(c/9)clyly/E1xlE2yIE3yI
3) 45° ¥

(3) —
+Xxlyly/x/E1y1E2y1E3x1+Xxlny/y/ElylEZXIESyI]_

3 3
= €p [Xp(cx)xxElxlEZerle+Xg(cx)ny1xlE2yrE3yr

3 3
+Xg(cy)yxE1y/E2y/E3xl+Xg(cy)xyE1ylE2xlE3yl]=
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x3) Tensor

3 3
= €o [Xa(cx)xxElxlEleEer+X3(cx)ny1xlE2y/E3yl
3 3
+X;(cy)yxE1y/E2yIE3xr+Xg(cy)xyE1yrE2xlE3yl]=

— (3) (3) (3) (3)
= € + X T X +x E.E,E
0 2\/§ XXXX xXxXyy Xyyx xyxy] 15263

In exactly the same way:

1
3) _ (3) (3) (3) (3)
Py! = €o 2\/§ XXXX + Xxxyy + Xxyyx+Xxyxy]E1E2E3

By projecting Py(,g) and ij,s) to the ‘old’ x-axis, we get :

1 1,.,3 (3) (3)

3 1
Px()_\/_E(

BD+r)= ¢

1 @3 @3) 3 L0

= €p E XXXX + Xxxyy + Xxyyx+)(xyxy

OZﬁ\/_E [Xxxxx +Xxxyy +Xxyyx ]E1E2E3

]E1E2E3

y E,E,E;
X
3
Py 2%
45° ,
X
p®

X!

(16.3)
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By comparing Px(?’) obtained by two different ways, (16.2) and (16.3), that is in two coordinate systems, we get this

x3) Tensor

relation between the third-order susceptibilities :

Same as

1 3 3 3 3 3
E y(cx)xx + Xa(cx)yy + Xa(cy)yx + Xy(cy)xy] — Xa(cx)xx

A _ .03 (3) (3)
Xxxxx = Xxxyy + Xxyyx + Xxyxy

(16.4)

3 _ .3) (3) (3)
X1111 = X1122 T X1221 T X1212

And all permutations of x-y-z, e.g. 111> 2222- 3333 efc.

(16.5)
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x3) Tensor

These are universal relation for isotropic media — true for any set of input frequencies, on or off resonance.

The number of independent elements is reduced to 3 — true for all isotropic media, including liquids, gases
of molecules or electrons.

In the case of Kleinman symmetry (optical frequencies are well below resonances) permutation
symmetry applies: ikl 2 jikl 2 ijlk = ikjl ... etc...

And we get:

3) 3) ® _1 © (16.5)

Xxxyy = Xxyyx = Xxyxy = 3Xxxxx

only 1 tensor element is independent



x3) Tensor: crystals

For GaAs crystal (43m symmetry, cubic crystal) only 4 tensor elements are independent

XXXX = YYYY = ZZZZ
YVZZ = ZZXX = XXYY = ZZYY = XXZZ = YYXX
YZZY = ZXXZ = XYYX = ZYYZ = XZZX = YXXY

YZYZ = ZXZX = XYXY = ZYZY = XZXZ = YXYX

18



Examples of third-order processes

Intensity- dependent refraction index
Is the most typical manifestation of
x3) effects



X©3) due to fast electronic response

Recall Lecture 3

Nonlinear Susceptibility of a Classical Anharmonic Oscillator

_U(x) = ax?

,/ ideal parabola
p

Centrosymmetric Media
tom A — e.g. liquids, gases, amorphous solids (such as AU(X) v =axt +yxt
atom glass), and many crystals (such as Si, Ge etc.)
There is no cubic term in U(x) :
electron I 2 4
U(x) = ax® + yx*+ ..
atom A As a cosequence, such effects as second-
harmonic generation and optical rectification (and =
also piezoelectric effect) are forbidden.

Third-harmonic generation

Using similar formalism, one can show that high excitation field produces the nonlinear polarization oscillating at
frequency 3w (in addition to the one oscillating at w).
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X©) due to fast nonresonant electronic response (e.g. alkali metal vapors)

Nonresonant electronic nonlinearities occur as the result of the nonlinear response of
bound electrons to an applied optical field. This nonlinearity usually
is not particularly large but is of considerable importance because it is present in all

dielectric materials.

The third-order susceptibility describing the nonlinear refractive index can be described
using the laws of quantum mechanics and a 4-level model system.

Wg = Wp + Wg + W, (b) (©)

(3) transition dipole momenta A |
ijih(wO’aa)rawqawp) /
. A
N lul(g{’wulj)nlu;?,m u’l};ig 1
eoh — (a)vg — a)a)(a)ng — Wg — (Up)(wmg — a)p)

The 24 permutations denoted by the operator Pk are:

Wg , Wy , Wq , W) (Wp , Wg , Wq , Wr
wo,wp,wr,wq

r

€
Q
£
£

€

p
|
p
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X() due to molecular re-orientation

Liquids that are composed of anisotropic molecules (i.e., molecules having an anisotropic
polarizability tensor) typically possess a large value of n,. Example: CS, molecule. The
origin of this nonlinearity is the tendency of molecules to become aligned in the electric field
of an applied optical wave. The optical wave then experiences a modified value of the
refractive index because the average polarizability per molecule has been changed by the
molecular alignment.

E
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lower potential
energy

CS,

>

higher potential
energy

This torque is directed in such a manner as to twist the molecule into alignment with the applied electric field.

22



XB) due to electrostriction

Liquid is sucked in between the plates of a charged capacitor

Vo

4_




XB) due to electrostriction

Consider an electrical capacitor with two parallel
plates. When an electric field is applied, charges
are induced on the plates with opposite signs on

opposite plates. Due to the presence of the
i \Y positive and negative charges, there is a
compressive force squeezing the medium
that produces a strain field. This results in a
material contraction and hence change in the
refractive index.

o T
. A c,_i‘i_oﬂ
W E % d
TE Qrowh  eimenis > Edvcen
& a-—x > & .

Another effect is that a dielectric will be

—_— - — —_— x sucked into a capacitor because it
reduces the total energy
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XB) due to electrostriction

The effect is ~ E2



XG) due to thermal effects

Thermal processes can lead to large nonlinear optical effects. The origin of thermal nonlinear optical effects is that some
fraction of the incident laser power is absorbed in passing through an optical material. The temperature of the illuminated
portion of the material consequently increases, which leads to a change in the refractive index of the material. For gases,
the refractive index invariably decreases with increasing temperature (at constant pressure), but for condensed matter the
refractive index can either increase or decrease with changes in temperature.

The time scale for changes in the temperature of the material can be quite long (of the order of seconds), and consequently
thermal effects often lead to strongly time-dependent nonlinear optical phenomena.

Temperature gradient

N\

beam
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