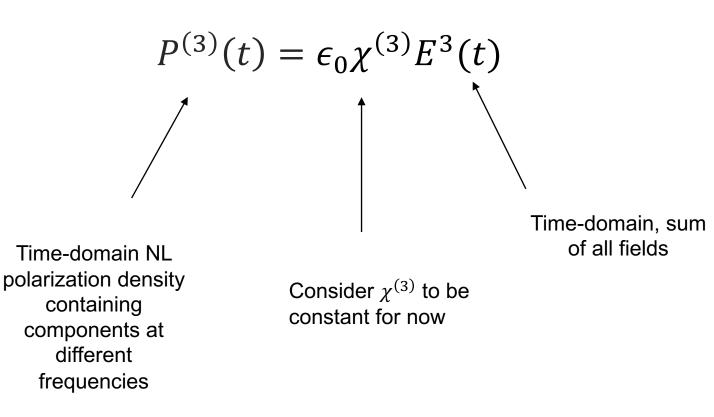
Lecture 17

Intensity-dependent refractive index Optical Kerr effect.

Third-order nonlinear optics

NL polarization density, time domain

NL polarization. Scalar version; no dispersioion of $\chi^{(3)}$



Third harmonic generation

Third harmonic generation (THG)

Assume that the input field has only <u>one</u> frequency component ω

And assume a <u>scalar</u> version of the 3-wave interaction (the input field is along x-axis)

NL polarization (scalar version) in time domain:

 \sim

$$P^{(3)}(t) = \epsilon_0 \chi^{(3)} E^3(t)$$

Fourier component

$$E(t) = \frac{1}{2} (E_1 e^{i\omega t} + c. c.)$$

$$E_1 = E_1(\omega)$$

$$\chi^{(3)} = \chi^{(3)}_{xxxx}$$

$$P^{(3)}(t) = \epsilon_0 \chi^{(3)} (\frac{1}{2} E_1 e^{i\omega t} + c. c.)^3 =$$

$$= \frac{1}{8} \epsilon_0 \chi^{(3)} (E_1 e^{i\omega t} + E_1^* e^{-i\omega t}) (E_1 e^{i\omega t} + E_1^* e^{-i\omega t}) (E_1 e^{i\omega t} + E_1^* e^{-i\omega t}) =$$

$$= \frac{1}{8} \epsilon_0 \chi^{(3)} [E_1^3 e^{3i\omega t} + E_1^{*3} e^{-3i\omega t} + 3E_1 (E_1 E_1^*) e^{i\omega t} + 3E_1^* (E_1 E_1^*) e^{-i\omega t}] =$$

$$(17.1)$$

Self phase modulation (SPM) terms

Third harmonic generation (THG)

pick only components with $\pm 3\omega$

$$P_{3\omega}(t) \rightarrow \frac{1}{8} \epsilon_0 \chi^{(3)} [E_1^3 e^{3i\omega t} + c.c.] = \frac{1}{4} \chi^{(3)} E_1^3 \frac{1}{2} (e^{3i\omega t} + c.c.)$$

As usual, we now look for a polarization density component at a specific frequency 3ω

$$P_{3\omega}(t) = \frac{1}{2} \left[P(3\omega)e^{i3\omega t} + c.c. \right]$$

Hence we get:

Fourier component (amplitude)

$$\mathbf{F}(3\omega) = \frac{1}{4} \epsilon_0 \chi^{(3)} E_1^3(\omega)$$

(17.2)

- NL polarization at third harmonic 3ω

- will come back to this topic later.

Intensity- dependent refraction or self phase modulation (SPM)

Intensity- dependent refraction

Assume that the input field has only one frequency component ω

And assume a scalar version of the 3-wave interaction (all fields are along x-axis)

NL polarization (scalar version) in time domain:

 $=\frac{-}{8}$

 \bigcirc

$$P^{(3)}(t) = \epsilon_0 \chi^{(3)} E^3(t)$$

Fourier component

$$\mathbf{E}(t) = \frac{1}{2}E_1e^{i\omega t} + c.c.$$

$$E_1 = E_1(\omega)$$

 $\chi^{(3)} = \chi^{(3)}_{xxxx}$

$$P^{(3)}(t) = \epsilon_0 \chi^{(3)} (\frac{1}{2} E_1 e^{i\omega t} + c.c.)^3 =$$

$$= \frac{1}{8} \epsilon_0 \chi^{(3)} (E_1 e^{i\omega t} + E_1^* e^{-i\omega t}) (E_1 e^{i\omega t} + E_1^* e^{-i\omega t}) (E_1 e^{i\omega t} + E_1^* e^{-i\omega t}) =$$

$$= \frac{1}{8} \epsilon_0 \chi^{(3)} [E_1^3 e^{3i\omega t} + c.c. + 3E_1 (E_1 E_1^*) e^{i\omega t} + c.c.]$$

 $\rightarrow \quad \frac{3}{8} \epsilon_0 \chi^{(3)}(E_1 | E_1 |^2 e^{i\omega t} + c.c.)$ pick only components with $\pm \omega$

Intensity- dependent refraction

Fourier component

$$\Rightarrow \qquad P(\omega) = \frac{3}{4} \epsilon_0 \chi^{(3)} |E_1(\omega)|^2 E_1(\omega) \qquad (17.3)$$

What what is the meaning of the $P(\omega) = P^{NL}(\omega)$ term?

Racall relation between polarization density P and the electric field : $P = \epsilon_0 \chi E$ $\chi = n^2 - 1$ $P^{NL}(\omega)$ is a term that can be described by $P^{NL}(\omega) = \Delta P = \Delta(\epsilon_0 \chi E_1) = \epsilon_0 \Delta \chi E_1$

Hence
$$\frac{3}{4}\epsilon_0\chi^{(3)}|E_1|^2E_1 = \Delta P = \Delta(\epsilon_0 \chi E_1) = \epsilon_0\Delta\chi E_1 \rightarrow \Delta\chi = \frac{3}{4}\chi^{(3)}|E_1|^2$$

on the other hand, $\chi = n_0^2 - 1$; $\Delta \chi = \Delta (n_0^2 - 1) = 2n_0 \Delta n$ n_0 - linear ref. index

$$\Rightarrow \qquad \Delta n = \frac{3}{8n_0} \chi^{(3)} |E_1|^2$$

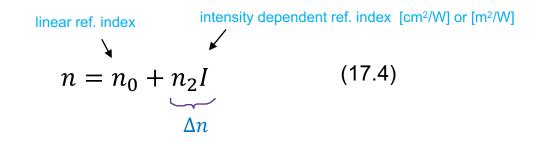
refractive index change induced by high optical intensity

Recall that the intensity $I = \frac{1}{2}c\epsilon_0 n_0 |E_1|^2$

Hence
$$\Delta n = \frac{3}{8n_0} \chi^{(3)} \frac{2I}{c\epsilon_0 n_0} = \frac{3\chi^{(3)}}{4n_0^2\epsilon_0 c} I$$
 (17.3a)

Intensity- dependent refraction

The usual way of defining the intensity-dependent refractive index is by means of the equation:



Hence we find that n_2 is related to $\chi^{(3)}$ by

$$n_2 = \frac{3\chi^{(3)}}{4n_0^2\epsilon_0 c}$$
(17.5)

self:

Cross phase modulation (XPM): two waves with **parallel** polarization

Intensity- dependent refraction: two waves with || polarization

Co-polarized beams

Now we use two separate beams, where the presence of the strong beam of amplitude $E_2(\omega)$ leads to a modification of the refractive index experienced by a weak probe wave of amplitude $E_1(\omega')$. As before, we assume a scalar version of the 3-wave interaction (all fields are along x-axis)

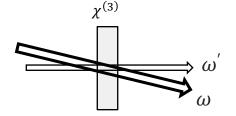
$$E(t) = \frac{1}{2}E_1e^{i\omega' t} + \frac{1}{2}E_2e^{i\omega t} + c.c.$$

NL polarization:

 \cap

$$P^{(3)}(t) = \epsilon_0 \chi^{(3)} E^3(t)$$

$$\chi^{(3)} = \chi^{(3)}_{xxxx}$$



now there are two fields

sum of all fields

$$P^{(3)}(t) = \epsilon_0 \chi^{(3)} \left(\frac{1}{2} E_1 e^{i\omega' t} + \frac{1}{2} E_2 e^{i\omega t} + c.c. \right)^3 =$$

= $\frac{1}{8} \epsilon_0 \chi^{(3)} \left(E_1 e^{i\omega' t} + E_1^* e^{-i\omega' t} + E_2 e^{i\omega t} + E_2^* e^{-i\omega t} \right)$
× $(E_1 e^{i\omega' t} + E_1^* e^{-i\omega' t} + E_2 e^{i\omega t} + E_2^* e^{-i\omega t})$
× $(E_1 e^{i\omega' t} + E_1^* e^{-i\omega' t} + E_2 e^{i\omega t} + E_2^* e^{-i\omega t})$

total 64 terms

pick only components with $\pm \omega'$

Intensity- dependent refraction: two waves with || polarization

$$\rightarrow \frac{1}{8}\epsilon_0\chi^{(3)}6\{ (E_2E_2^*) E_1e^{i\omega't} + c.c.\} = \frac{3}{4}\epsilon_0\chi^{(3)}(|E_2|^2E_1e^{i\omega't} + c.c.) = \frac{3}{2}\epsilon_0\chi^{(3)}\frac{1}{2}(|E_2|^2E_1e^{i\omega't} + c.c.)$$

Look for the nonlinear polarization component at the angular frequency $\pm \omega'$ in the form $P^{(3)}(t) = \frac{1}{2}P(\omega')e^{i\omega t} + c.c.$

the Fourier component

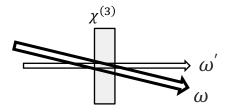
$$\Rightarrow \qquad P(\omega') = \frac{3}{2} \epsilon_0 \chi^{(3)} |E_2|^2 E_1 \qquad (17.6) \qquad \chi^{(3)} = \chi^{(3)}_{xxxx}$$

Hence we find that n_2 in the $n = n_0 + n_2 I$ representation, is given by

cross:
$$n_2 = \frac{3\chi^{(3)}}{2n_0^2\epsilon_0 c}$$
 (17.7)

Hence, a strong wave affects the refractive index of a weak wave **twice as much** as it affects its own refractive index.

In fact, a strong wave can be of the <u>same frequency</u>, as soon it is distinguishable from the weak wave (say by angle)



Cross phase modulation (XPM): two waves with **perpendicular** polarization

Cross-nonlinear refraction: two waves with \perp polarization

This is the case commonly encountered in fibers.

Now we use two separate beams with different frequencies and orthogonal polarizations: a weak probe wave of amplitude $E_1(\omega)$ along x-axis and a strong beam of amplitude $E_2(\omega)$ along y-axis. Now, we us a tensor version of the 3-wave interaction.

Look at cross-nonlinear refraction: how a strong beam with the orthogonal polarization
changes ref. index of the 'probe' beam
use tensor form now:
$$P_{i}^{(3)} = \epsilon_{0} \sum_{j,k,l} \chi_{ijkl} E_{j} E_{k} E_{l}$$
only cross components

$$P_{i}^{(3)} = \epsilon_{0} \sum_{j,k,l} \chi_{ijkl} E_{j} E_{k} E_{l}$$

$$E_{x} = \frac{1}{2} E_{1} e^{i\omega' t} + c.c.$$

$$E_{y} = \frac{1}{2} E_{2} e^{i\omega t} + c.c.$$

$$P_{x}^{(3)}(t) = \epsilon_{0} \{\chi_{xxyy} E_{x} E_{y}^{2} + \chi_{xyyx} E_{x} E_{y}^{2} + \chi_{xyxy} E_{x} E_{y}^{2}\} =$$

$$= \epsilon_{0} \{\chi_{xxyy} + \chi_{xyyx} + \chi_{xyyx}\} \left(\frac{1}{2} E_{1} e^{i\omega' t} + c.c.\right) \left(\frac{1}{2} E_{2} e^{i\omega t} + c.c.\right) \left(\frac{1}{2} E_{2} e^{i\omega t} + c.c.\right)$$

pick only components with $\pm \omega'$

Cross-nonlinear refraction: two waves with
$$\perp$$
 polarization

$$\frac{1}{8}\epsilon_0 \{\chi_{xxyy} + \chi_{xyyx} + \chi_{xyxy}\} 2 (E_2 E_2^*) (E_1 e^{i\omega' t} + c.c.\} =$$

$$= \frac{1}{4}\epsilon_0 \{\chi_{xxyy} + \chi_{xyyx} + \chi_{xyxy}\} |E_2|^2 (E_1 e^{i\omega' t} + c.c.)$$

$$= \frac{1}{4}\epsilon_0 \chi_{xxxx} |E_2|^2 (e^{i\omega' t} + c.c.)$$
Use: $\chi_{xxyy} + \chi_{xyyx} + \chi_{xyxy} = \chi_{xxxx}$
In the Kleinman limit all the cross-polarization terms are equal in isotropic media

Finally we get the Fourier component:

This is how a strong beam with the orthogonal polarization changes ref. index of the 'probe' beam

Self- and cross- nonlinear refraction: summary

$$n = n_0 + n_2 I$$

	NL ref. index n ₂	Relative NL ref. index
Self phase modulation (SPM)	$n_2 = \frac{3\chi^{(3)}}{4n_0^2\epsilon_0 c}$	1
Cross phase modulation (XPM): two waves with polarization	$n_2 = \frac{3\chi^{(3)}}{2n_0^2\epsilon_0 c}$	2
Cross phase modulation (XPM): two waves with ⊥ polarization	$n_2 = \frac{\chi^{(3)}}{2n_0^2\epsilon_0 c}$	$\frac{2}{3}$

Cross-nonlinear refraction: summary

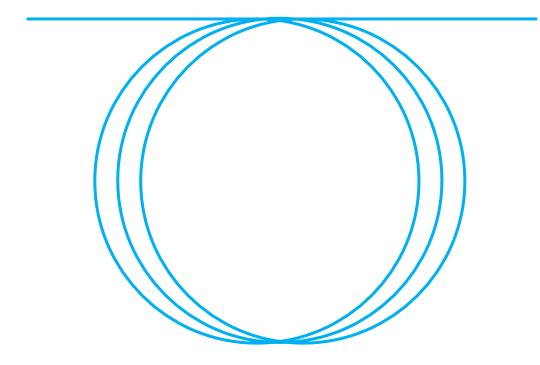
Hence, when two intensities are comparable, for the probe beam we have:

$$\Delta n = n_2(I_1 + 2I_2) \qquad (17.10a)$$
probe beam pump beam, co-polarized
$$\Delta n = n_2(I_1 + \frac{2}{3}I_2) \qquad (17.10b)$$
probe beam pump beam, orthogonally polarized
where
$$n_2 = \frac{3\chi^{(3)}}{4n_0^2\epsilon_0 c} \quad -\text{ self phase modulation ceff.}$$

Third-order nonlinear optical coefficients of various materials

				Material	n_0	$\chi^{(3)} (m^2/V^2)$	$n_2 ({\rm cm}^2/{\rm W})$
Material	n_0	$\chi^{(3)} \ (m^2/V^2)$	$n_2 ({\rm cm}^2/{\rm W})$	Nanoparticles			
Crystals				CdSSe in glass	1.5	1.4×10^{-20}	1.8×10^{-14}
Al_2O_3	1.8	3.1×10^{-22}	2.9×10^{-16}	CS 3-68 glass	1.5	1.8×10^{-16}	2.3×10^{-10}
CdS	2.34	9.8×10^{-20}	5.1×10^{-14}	Gold in glass	1.5	2.1×10^{-16}	2.6×10^{-10}
Diamond	2.42	2.5×10^{-21}	1.3×10^{-15}	Polymers			
GaAs	3.47	1.4×10^{-18}	3.3×10^{-13}	Polydiacetylenes			
Ge	4.0	5.6×10^{-19}	9.9×10^{-14}	PTS		8.4×10^{-18}	3.0×10^{-12}
LiF	1.4	6.2×10^{-23}	9.0×10^{-17}	PTS		-5.6×10^{-16}	-2.0×10^{-10}
Si	3.4	2.8×10^{-18}	2.7×10^{-14}	9BCMU			2.7×10^{-18}
TiO ₂	2.48	2.1×10^{-20}	9.4×10^{-15}	4BCMU	1.56	-1.3×10^{-19}	-1.5×10^{-13}
ZnSe	2.7	6.2×10^{-20}	3.0×10^{-14}	Liquids			
Glasses				Acetone	1.36	1.5×10^{-21}	2.4×10^{-15}
Fused silica	1.47	2.5×10^{-22}	3.2×10^{-16}	Benzene	1.5	9.5×10^{-22}	1.2×10^{-15}
As ₂ S ₃ glass	2.4	4.1×10^{-19}	2.0×10^{-13}	Carbon disulfide	1.63	3.1×10^{-20}	3.2×10^{-14}
BK-7	1.52	2.8×10^{-22}	3.4×10^{-16}	CCl ₄	1.45	1.1×10^{-21}	1.5×10^{-15}
BSC	1.51	5.0×10^{-22}	6.4×10^{-16}	Diiodomethane	1.69	1.5×10^{-20}	1.5×10^{-14}
Pb Bi gallate	2.3	2.2×10^{-20}	1.3×10^{-14}	Ethanol	1.36	5.0×10^{-22}	7.7×10^{-16}
SF-55	1.73	2.1×10^{-21}	2.0×10^{-15}	Methanol	1.33	4.3×10^{-22}	6.9×10^{-16}
SF-59	1.953	4.3×10^{-21}	3.3×10^{-15}	Nitrobenzene	1.56	5.7×10^{-20}	6.7×10^{-14}
				Water	1.33	2.5×10^{-22}	4.1×10^{-16}
			1	Other materials		25	10
		0	/	Air	1.0003	1.7×10^{-25}	(5.0×10^{-19})
for SI units m²/V	V : to ge	t m²/W - divide	this by 10 ⁴	Ag		2.8×10^{-19}	
				Au		7.6×10^{-19}	

Third-order nonlinear optical coefficients of various materials



What is the intensity needed to get π phase shift for L=1m fiber at λ =1 $\mu m?$

Optical fiber: Fused silica (SiO₂) $n_2=3.2 \times 10^{-16} \text{ cm}^2/\text{W}$

$$\Delta \varphi = \Delta(kL) = \frac{2\pi}{\lambda} L \Delta n = \pi$$

$$\Delta n = \frac{1}{2} \frac{\lambda}{L} = 5 \ 10^{-7}$$

$$\Delta n = I n_2$$

$$I = 5 \times 10^{-7} / \ 3.2 \times 10^{-16} = 1.56 \ \text{GW/cm}^2$$

for $(10 \mu \text{m})^2$ core, this corresponds to the power of 1.56 kW

- can be achieved only with pulsed lasers

Optical fiber: As₂S₃ glass

 $n_2=2.0 \times 10^{-13} \text{ cm}^2/\text{W}$ for (20µm)² core

- need the power of 10 W only

DC Kerr effect

Electro-optic effect with DC field (DC Kerr effect)

Assume that we have an optical field $Re\{E_1e^{i\omega t}\}$ in the presence of a DC field E_{DC} such that $|E_1| \le |E_{DC}|$

 $E(t) = \frac{1}{2}E_1e^{i\omega t} + c.c.$

Fourier component

NL polarization (scalar version) in time domain:

$$\chi^{(3)}(t) = \epsilon_0 \chi^{(3)} E^3(t)$$
 $\chi^{(3)} = \chi^{(3)}_{xxxx}$

$$P^{(3)}(t) = \epsilon_0 \chi^{(3)} (\frac{1}{2} E_1 e^{i\omega t} + \frac{1}{2} E_1^* e^{-i\omega t} + E_{DC})^3 = \frac{1}{2} \epsilon_0 \chi^{(3)} 3 E_{DC}^2 (E_1 e^{i\omega t} + c.c) + \cdots$$

components with $\pm \omega$

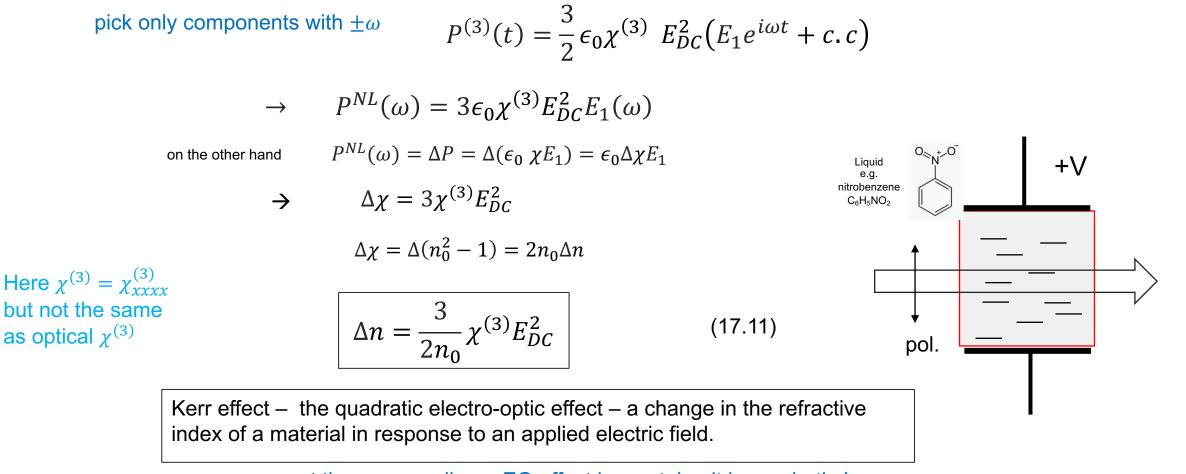
components with 0, $\pm 2\omega$, $\pm 3\omega$

frequency set: $\omega_p + \omega_q + \omega_r$ $p,q,r = -\omega, \omega, 0$

ω+ω+ω=3ω ω+ω+0=2ω	1 3	-ω-ω-ω=-3ω -ω-ω+0=-2ω	1 3
<mark>ω+0+0=ω</mark>	3	<mark>-ω+0+0=-ω</mark>	3
ω-ω+ω=ω	3	-ω+ω-ω=-ω	3
ω-ω+0=0	3	ω-ω+0=0	3
0+0+0=0	1		

total 27

Electro-optic effect with DC field (DC Kerr effect)



- not the same as linear EO effect in crystals - it is quadratic !

Speed of Light measurement

The Kerr Cell shutter was used in the 1920-40s to measure the speed of light. A beam of light is timed between an emitter and receiver while passing through a Kerr Cell. When the cell is activated the light beam is diverted and takes a different path to the receiver, this time difference is measured and the speed of light is calculated based on knowledge of the expected return time.

Electro-optic effect with DC field (DC Kerr effect)

Speed of Light measurement

The Kerr Cell shutter was used in the 1920-40s to measure the speed of light. A beam of light is timed between an emitter and receiver while passing through a Kerr Cell. When the cell is activated the light beam is diverted and takes a different path to the receiver, this time difference is measured and the speed of light is calculated based on knowledge of the expected return time.^[3]

