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Self-focusing. Self-phase modulation; spectral broadening, and 

supercontinuum generation. Few-cycle optical pulses generation via 

spectral broadening and pulse compression.  

Lecture 18
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Self-focusing

In Lecture 17 we derived expressions for intensity-dependent refraction and nonlinear index n2

(for self-action)

n2 is usually positive
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Self-focusing
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Self-focusing: 3 scenarios

Three self-action effects: 

(a) self-focusing of light, 

(b) self-trapping of light,  

(c) laser beam breakup, 
showing the transverse 
distribution of intensity of a 
beam that has broken up 
into many filaments.

n2 is positive in common optical materials.  As a result, the laser beam induces a refractive index variation 
within the material with a larger refractive index at the center of the beam than at its periphery. Thus the 
material acts as if it were a positive lens, causing the beam to come to a focus within the material. 
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Self-focusing: a simple model
Prediction of the self-focusing distance zsf by means of Fermat’s principle.

*    Fermat's principle: the path taken by a ray between two given points is the path that can be traversed in the least time. 

linear ref. index 𝑛!

ref. index 𝑛!+𝑛"𝐼

beam intensity

Fermat’s principle tells us that          (𝑛!+𝑛"𝐼)𝑧#$ 	= 	 𝑛!𝑧#$/cos 𝜃

cos 𝜃 ≈ 1 −
1
2𝜃

!

get self-focusing angle:   𝜃#$ =
2𝑛%𝐼
𝑛&

=
2Δ𝑛
𝑛&

1/cos 𝜃 ≈ 1 +
1
2𝜃

!

this formula 
assumes the 
self-focusing 
effect to be 
large, so that 
diffraction is 
ignored

(18.1)
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Self-focusing
Self-trapping of light – occurs when the tendency of a beam to spread as a consequence of diffraction is 
precisely balanced by the tendency of the beam to contract as a consequence of self-focusing.

The diffraction angle 𝜃'($$ ≈ 0.61 )/+"
,

  should be equal to the self-focusing angle of Eq. (18.1)
à

𝜃 = 1.22
𝜆/𝑛
𝐷

Diffraction pattern by a circular aperture diam. D

𝜃#$ =
2𝑛%𝐼
𝑛&

0.61
𝜆/𝑛&
𝐷

=
2𝑛%𝐼
𝑛&

Following Boyd textbook:

à

𝑃45 ≈
𝜋𝐷%

4 𝐼 ≈
𝜋(0.61)%𝜆%

8𝑛&𝑛%
(18.2)

𝑃!" =
1.2𝜆#

8𝑛$𝑛#
(18.3)

The more or less exact 
formula for Gaussian beams (Fibich and Gaeta OL 25, 335, 2000)

0.61
𝜆/𝑛
𝐷

𝐼 = (0.61)%
𝜆%

2𝑛&𝑛%𝐷%
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Self-focusing: a simple model
Note that this result does not depend on the beam width, but just on the power. Therefore even very 
broad beams can eventually self-focus in a self-focusing medium if their total power exceeds Pc .

Same critical power for  
self-focusing but 

different peak intensities

small ∆𝑛
but also small diffraction

large ∆𝑛
but also large diffraction

∆𝑛

∆𝑛
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Self-focusing: a simple model

The characteristic self-focusing distance (Gaussian beams)
   

𝑧#$ 	=
𝑤&
𝜃 ≈

𝑤&
(𝜆/𝑛)
𝜋𝑤&

1
𝑃/𝑃45 	− 1

≈

𝜋𝑤&%
(𝜆/𝑛)
𝑃/𝑃45 	− 1

=
𝑧,

𝑃/𝑃45 	− 1

𝜃 = 𝜃#$% −𝜃'($$%

More generally: the two competing processses result in the total convergence angle:   

From (18.1) it follows that 𝜃#$% 	~	𝐼	𝑎𝑛𝑑 𝑎𝑡	𝑎	𝑔𝑖𝑣𝑒𝑛	𝑏𝑒𝑎𝑚𝑠𝑖𝑧𝑒 ~𝑃	,	

hence 𝜃 = 𝜃'($$ 𝑃/𝑃45 	− 1
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Self-focusing
Yariv (1975) has shown that for Gaussian beams with arbitrary beam-waist position (𝑧𝑚𝑖𝑛), the distance 
from the entrance face to the position of the self-focus (𝑧𝑠𝑓) is given by the formula

(18.4)

Example: 
Beam waist at the front crystal surface
 𝑤 = 𝑤&	 (𝑧6(+= 0)	

𝑧#$ =
1
2𝑘𝑤

"

(𝑃/𝑃%& 	− 1)'/"+2𝑧)*+/𝑘𝑤!"

𝑘 =
2𝜋
𝜆/𝑛

𝑧#$ =
1
2𝑘𝑤&

%

(𝑃/𝑃45 	− 1)7/%
=

𝜋𝑤&%
(𝜆/𝑛)

(𝑃/𝑃45 	− 1)7/%
=

𝑧8
(𝑃/𝑃45 	− 1)7/%

𝑃/𝑃45=1  à 𝑧#$=∞ SELF GUIDING

Rayleigh length

0.734 (Fibich and Gaeta 
OL 25, 335, 2000)

(18.5)

⁄𝑃 𝑃45 = 0

⁄𝑃 𝑃45 = 2

𝑃/𝑃45=1 
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Self-focusing:  another derivation for Pcr

Total internal reflection occurs if θ is less than the critical 
angle θ0 for total internal reflection, which is given by

This can be approximated by: 

A laser beam of diameter D (flat-top) will contain rays within 
a cone whose angular extent is of the order of :

D

𝜃'($$ ≈ 0.61
𝜆/𝑛&
𝐷

Self-trapping will occur if total internal reflection 
occurs for all of the rays contained within the beam

𝜃& = 2𝛿𝑛/𝑛& = 2𝑛%𝐼/𝑛&

𝜃'($$ = 𝜃& hence 2𝑛%𝐼/𝑛& = 0.61 )/+"
, ,

and we get 𝑃45 ≈
𝜋𝐷%

4 𝐼 ≈
𝜋(0.61)%𝜆%

8𝑛&𝑛%
(18.6) - same as (18.2)

Again, the power, not the intensity, of the laser beamis is crucial in determining whether self-focusing will occur

flat-top laser beam

hence

𝐼 =
(0.61)%𝜆%

2𝑛&𝑛%𝐷%
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Self-focusing

Some examples: 

1) For CS2 n2=3.2x10-18 m2/W
 (𝜆 = 1.06	µ𝑚)

𝑃45 =
9(&.;7)#)#

=+"+#
= 31kW

𝑛"𝑛! (cm2/W)

from Lecture 17 

pi*0.61^2*1.06e-6^2/  8/1.63/3.2e-18

Example: 
1 mJ , 10 ns pulse;       P= 100kW   > 𝑃45 

2) For SiO2 fiber n2=3.2x10-20 m2/W
𝜆 = 1.56	µ𝑚 

𝑃45 =
9(&.;7)#)#

=+"+#
= 7.6 MW

pi*0.61^2*1.56e-6^2/  8/1.47/3.2e-20

e.g.  1 µJ pulse with 100-fs duration  

3) For air n2=5x10-23 m2/W
𝜆 = 10.6	µ𝑚 (CO2 laser)

𝑃45 =
9(&.;7)#)#

=+"+#
= 3.3 GW

pi*0.61^2*10.6e-6^2/  8/1/5e-23

e.g. need 3.3 mJ pulse with 1-ps duration  
à  10 MW peak power

CS2
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Self-focusing

Kerr-lens mode locking in a Ti:sapphire laser
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Self-phase modulation, spectral 
broadening, and supercontinuum 

generation
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Spectral broadening related to short pulses

∆𝜔

𝑘& =
2𝜋
𝜆&

vacuum k-vector
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Spectral broadening

Let us look more carefully at this term, ∆𝜔 = −𝑘&𝐿𝑛%
𝑑𝐼
𝑑𝑡

𝑑𝐼
𝑑𝑡 > 0, 	 ∆𝜔 < 0

pulse leading edge
𝑑𝐼
𝑑𝑡 < 0, 	 ∆𝜔 > 0

pulse trailing edge

Analogy with mirror reflection:

Mirror is stationary:
frequency 𝜔 does not change

Mirror is fast moving: first away 
from the beam and then 
towards the beam. The 
frequency 𝜔 changes because 
of the Doppler effect

max phase shift, zero frequency shift

see Stegeman p.353

Mirror
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Spectral broadening

max. nonlinear phase shift ∆𝜑	=2π

original pulse

original 
spectrum

t

chirped pulse

∆𝜑 = −𝑘$𝑛#𝐼0𝐿
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Spectral broadening

max. nonlinear phase shift ∆𝜑	=10π

original pulse

original 
spectrum

t

chirped pulse

∆𝜑 = −𝑘$𝑛#𝐼0𝐿
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Spectral broadening

There are points on the pulse envelope that 
correspond to the same frequency shift;  but this 
points are shifted in time. Hence constructive or 
destructive interference can occur.

𝜋

G. Stegeman
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Spectral broadening
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Spectral broadening
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Supercontinuum generation in sub-cm segments of highly nonlinear 
tellurite fiber

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, Over 4000 nm bandwidth of mid-
IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs, Opt. Express 16, 7161 (2008). 
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Spectral broadening
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Spectral broadening
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Spectral broadening
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Few-cycle optical pulses generation via 
spectral broadening and pulse 

compression
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Spectral broadening

For self-phase modulation to occur, the response time of the nonlinearity should be 
much shorter than the pulse width. 

CS2 case:

for fs pulses:    Only fast (electron) Kerr nonlinearity would work 

for > 1 ps pulses:  Both vibrational and the Kerr nonlinearity would work
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Pulse compression

In the absence of nonlinearity, pulse broadening always occurs due to group velocity dispersion (GVD), 
which is the equivalent of diffraction in the space domain.

Pulse compression: when n2> 0 and group velocity dispersion is anomalous:    

normal dispersion:
red runs faster than blue

anomalous dispersion:
blue runs faster than red

2-3 cycle pulse
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Nonlinearly compressed pulses of a Kerr-lens mode-locked ytterbium-doped 
yttrium–aluminium–garnet (Yb:YAG) thin-disc oscillator

The initial pulses were produced by a Kerr-lens mode-
locked Yb: YAG thin-disc oscillator that operates at a 
100 MHz repetition rate.  The oscillator delivers 250 fs 
pulses at 1.03 µm and an average power of 90 W.

A temporal 
compression down to 
19 fs with 50 W of 
average power was 
achieved in a 
nonlinear 
compression stage 
that consists of a 
photonic crystal fibre 
(PCF) followed by 
chirped mirrors.
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Few cycle pulse generation by means of soliton self-compression of 
Ho:YAG thin-disk laser pulses at 2 μm in an optical fiber 

Laser: pulse 
duration 260 fs



30

Few cycle pulse generation by means of soliton self-compression of 
Ho:YAG thin-disk laser pulses at 2 μm in an optical fiber 

Silica-core photonic-crystal fiber 
(PCF) for spectral broadening and 
self compression

pulse duration 260 fs   à   15 fs
(self compression in a fiber)
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Self-focusing and defocusing nonlinearities

The consequences of self-focusing and defocusing nonlinearities in the 
time domain are analogous to those just described in the space domain. 
Just as in the space domain self-focusing led to energy localization in 
space, in the time domain localization occurs in time; i.e., the pulse 
width collapses.
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The nonlinear Schrödinger equation describes the propagation of the wave through a nonlinear 
medium. 

The second-order derivative represents the dispersion, while the last term represents the 
nonlinearity. 

The equation models many nonlinearity effects in a fiber, including but not limited to self-phase 
modulation, four-wave mixing, second-harmonic generation, stimulated Raman scattering, 
optical solitons, ultrashort pulses, etc.

The nonlinear Schrödinger equation

𝜕𝑎
𝜕𝑧 −

𝑖
2𝛽4

𝜕2𝑎
𝜕𝜏2 +𝑖𝛾 𝑎

4𝑎 = 0	

pulses broaden in time 
because of group 
velocity dispersion

pulses broaden in 
frequency because of 
self-phase modulation

NLSE

𝛽% =
𝑑%𝑘
𝑑𝜔%


