Lecture 19

Third harmonic generation. Nonlinear absorption.

Parametric processes due to 4-wave mixing.



Third harmonic
generation



Third harmonic generation (THG)

Fourier component

¥
Assume that the input field has only one frequency component: w E(t) = §E1€lwt +c.c.

Also assume a scalar version of the 3-wave interaction : all fields are along one axis (e.g. x-axis)

We will now look for the nonlinear polarization component at angular frequency +3w in the form
PG (1) = %(P(Sw)e‘g‘”t +c.c))

NL polarization:

3
PL( ) = €p z XijklEjEkEl —> scalar version P(B) (t) — EOX(3)E3(t) X(g) ~ X’(Ci)xx

Jkl

PG)(t) = 60)((3)(%Elei“’t +c.c.)3== %eo)((?’)(Ef’e?’i“)t + 3(E{E})E €'t +c.c.) =
1

@)L g3
pick only components with +3w = Z EoX (E El + c. C)

1
> P(3w) = Zeo)(@)Ef (19.1)




Third harmonic generation (THG)

Now use Slowly Varying Envelope Approximation (SVEA) from Lecture 2 to calculate the THG output :

0E(2) — ilwc [JOP (2.3)

0z 2n N

\

1
perturbation polarization P (3 (1)) — Z EOX(B) Ef ((1))

In the slowly varying OEQQw) _ lw ‘/

— Pyp

envelope (SVEA) T

S 2NCEg
approximation

EQBw) = E3(2) phase mismatch

/ Ak - k3 - 3k1
In the low conversion limit: dE3(2) iw  (3) 3 _iAkz
E;< E;, E; = const 5z %X( )El (w)e




Third harmonic generation (THG)

w
Easy to integrate E;(Bw) = —i—y®E3L
if Ak=0: 8nc
EsBw)|* = (g— X(?’)) |Eq|°L?
Now recall that the intensity I = %C60n|E|2 >
o = (e x®) () 12 = (g
3¢ 7 \8nc ceEgN 4egn?c?
Power P = IXAgfss > | = i
Pgw w
—(—— 3
Aeff (4607'12 2)( ) ( eff
w P3L*
P p. = (% 32
ower 3w (4601’12 X)) Aeffz

TH field grows linearly
with length

|E|? = 21 /cegn

X(B) )ZIwSLZ

(19.3)

(19.2)

— scales as as P,®> and grows
quadratically with length



Third harmonic generation (THG)

Refractive indices, phase-matching directions
and third order nonlinear coefficients of rutile
TiO, from third harmonic generation
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Abstract: Experiments of third harmonic generation in rutile Ti0, allowed
us to determine the phase-matching angles and the refractive indices of the
crystal up to 4500 nm. We also showed that ;s and y;5 coefficients of the
third order electric susceptibility tensor exhibit opposite signs, and that
l7:5(616.70m)| = 9.7 x 107 m*V2,
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Fig. 3. Ordinary n, and extraordinary n. principal refractive indices of TiO, as a function of
wavelength from present work in solid lines, and from [6-9] in symbols (experiments) and
dashed lines (calculations).



Third harmonic generation (THG)

For Ak # 0
and low conversion limit: OF . _
Es;< E;, E; = const 9B3(2) _ _ £X(3)Ef(w)e_mkz
0z 8nc

. L
Ea(30) =~ OBy ™ edz = ~ 2 VER e
\
b —inkLy — 20 [ =
v (1—e7 2% = v (at L=Le=m/Ak)
2 (P BN\ |6 field intensit
|E5| _(4ncAkX )°|El y

Now recall that the intensity I = %C60n|E|2 > |E|? = 21 /cegn



for intensities:

Third harmonic generation (THG)

213,,/cegn = (4ncAkX(3))2(21w/C€on)3
_ w 3)\27 3
130) - (ZEOnZCZAkX( )) Ia) (19-4)
P
Power P =[XxA, > I =
ff Aeff
P34 = ( W X(B) )2( Fo )3
Aeff ZEOnZCZAk Aeff
W p3
P, = (3)y2__©
3¢ (ZeonzczAkX ) Ags®

— grows as P> over one coherence length

(19.5)



Third harmonic generation in a fiber

Now let us take a concrete example: THG Fused silica: y®= 2.5x10722 m?2 /12
in a fiber 1.56 ym -> 0.52 ym (green)

n3 nl) (1.4613 1.4439
T

Ak_z”(__3 a1 052 S 156

_ 1= ~1
-3 ) 0.21 ym-'=2.1e5 m

T
(coh. length v 15 um)
Assume a fused silica fiber with A,r=(10pm)? > 109 m?
Assume 1-W CW pump laser at frequency w (1.56 um)

_ @ @) y2_Po_ -
P (ZeonzczAkX ) Aeff?

=17 x10-17 W - 45 photons per second

IS it
practical ?

* green photon at 0.52 umis: hw = 3.8 x1079 J



Two-photon
absorption



9

Nonlinear susceptibility x(3), quantum mechanical model

see e.g. Boyd, Stegeman

MO

At 2-photon
resonance 1-3

X(3) - is the sum of many different terms, but let us
take the term that is close to resonance 1-3:

X(g) ~ N Hialh12U23H34 !
€93 (w31—20) (W21 —2w) (w21 —w) w
w
N HigaM1zUa3 34 — N 1  UiaHi2H23U34
€oh3 (W31—2w) (W21 —2W+1Y21) (W31 —W) €oh3 V21 (W31 —20) (W21 —w)
——
added damping term | Im{)((g)} |
N 1  Uiafi2U23U34
Im{vGn = — 19.6 sharp
{X } €0h3 V21 (W31—2w) (W21 —w) ( ) Lorentz
Re{y®} =0 2y3”|[© function

2-photon transitions can take place where 1-photon 2w detuning
transitions may be forbidden
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Recall slowly varying
envelope approximation

(SVEA) equation

Recall NL polarization for the
w = w + W — w process

Hence we have at 1-2
2-photon resonance:

Two-photon absorption

JE(z) _ iwc lw p

=— P=—
0z 2n Ho 2&pCn

P(w) = %60)((3) |E; (w)|?E1 (w)

0E _ lw p = lw 3 (3) EI2E
dz = 2gocn . 2g4cn 404 IE]
3w . 3w
= —o— (UmG@BIEPE = —— |Im(x®)||E]E
3w 21
__Bsw Im(y@®|E = — IIm(®|E
8nc ceonl m 4egn?c? HmGc]
0FE E (3)
— E =
5, = % IE "2 = egnc? Hm G
0] 3w
— = — Iz =— |l (3)
0z 2 *2 2€qn?c? G

(2.3) (from L2)
(17.3)  (from L17)
I = %ceOn|E|2
(19.7)
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Two-photon absorption (another way to derive)

How does the power change if Im{y®} # 0? Power ~ |E(w)|? = E(w)E*(w)
d d dE dE* 3w 3w
_ 2 — * — Fx — = (=i (3) 2 (=i (3) 2 =
TIE@)? = —E@E"(0) =B —+E——=E ( i (=i [Im{x®)) |E| E)+E( i (=i |[Im{x®}IE| E)

3w
= ———|E|*|I (3)
e |1 [Im{xY= 3

Recall that the intensity [ = lceon|E|2 > |E|? = —
2 cen

2 dl 3w 2121 3)
ceondz  4nc Ceon) m {3

power is absorbed if y©®
has imaginary portion

ar 3w
dz  2n%eqc?

Im{}®}| I? = —a,I?

Two-photon absorption @

(2PA) coefficint = 2egnic? [Im{x®}| (19.8) same as (19.7) !

2PA units: cm/W or m/W



Two-photon absorption

It is easy to integrate d—l = —a,l?
Z

to get : [(z) = _fo

1+lya,z

1(2)/1,

Non-degenerate 2PA

(19.9)
the decay rate is slower
than exponential
CZZZ
ﬂ ~ non—degen.l I wlI
dz 2 11 e
©2 w1 = wq +wWy —W
dl, w, dl; 1 1 2 2

dz w, dz

2-photon absorption (2PA)isa y® process: w=w+ w —w
3-photon absorption (3PA)isa y® process: w=w+w—w+ w— w
4-photon absorption (4PA)isa y(7) process: w=w+w-w4w—-—w+w -
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Two-photon absorption

One-photon Two-photon




Is the energy conserved
in the self-phase
modulation (SPM)

process?



Is the energy conserved in the SPM process?

Now xy®is real (far from resonances)

Slowly varying envelope . .
approximation (SVEA) OE(2) —_ lwe .UOP — tw
equation 0z 2n 2goCn

P(@) = ot B (@)Es ()

dE(z, w) 3w
N T ,03) 2
= —I E(w)|“E(w
P g X (w)|“E(w) (19.10)
Does the power change as a result of SPM? Power ~ |E(w)|? = E(w)E*(w)
d d dE dE” 3w 3w
— 2 = * — g — 32 32
IE@)? = E@)E* (@) = B~ + B E( iy OE] E)+E<+18 MO E) 0

Y ®=Re(y®)

No power change in SPM if y® is real



Parametric vs non-parametric process

In a parametric process, population can be removed
from the ground state only for those brief intervals of
time when it resides in a virtual level. According to the
uncertainty principle, population can reside in a virtual

level for a time interval of the order of ~ &, where AE

is the energy difference between the virtual level and
the nearest real level.

Photon energy is always conserved in a parametric
process

3-photon process

w3 = W1tw;

4-photon process

Wy = (1)1+(1)2 +(1)3

4-photon process
w3 = W1twy-w3

self-phase modulation
when all w’s are the same
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Parametric processes due to
four-wave mixing (FWM)



Four-wave mixing (FWM), two pump waves

Phase matching

is essential w3 W Wy
We have two strong waves Wy Wy here; will talk
that can create two new waves W3 Wy aboutitin the A
next lecture. . i
in a 4-wave process W1 T W =w3+ Wy Assume Ak=0 : : >

for now

total field E(t) = %( Eet®1t + F el@2t 4 Foelwst 4 [ el0at v ¢ c)

1 . . . . w
Loglé:r!\;L Pup(t) = EGOX(S)( Eje'®1! + E;e'“2" + E3e'®3' + Eje'“" + c.c.)’ “ ’
. 83 =512 terms Wy

Now let us pick only components with +w5; and +w, - due to interaction of all 4 waves

P (O], = %eo)(@( 6E,E,E;e'®3t + c.c.)= ZEO)(B)( E,E,E;e'®3t +c.c.)

Pnr (O], = %EOXG)( 6E1E;E3et st +c.c.)= %EOX(S)( E\E Eze'st +c.c.)
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Four-wave mixing (FWM), two pump waves

k1 ko
Fourier components for Py, /\
3 . T~
P(w3) = EEOX(B)( E\EEf) k3 Ky
(19.11)
” P 3 (3) E.E- EX hwl th
(0)4)_260)( (E EzE3) ?}7;:\?
0E(w: 0
Now plug them into SVEA eaquation: (@) = Py (wi) . ha, hioy
0z 2ncey
to get: interaction of 4 photons
dE (w3) iws 3 o Bwyx® .
= " anoe. 3 CoX P (EiEEDe ™ = i B, EyEje™""
z nceg nc Ak = ki + ky — ks — kg+...
dE(a) ) iw 3 3w X(3) (19.12) .. plus NL phase modulation terms
4 4 N . — . 4 x _—
dz - m 560)((3)(E1E2E3)e = _lZ nc By EpEge™

Assume no pump depletion Ej, E, - const
and Ak=0 (an additional phase mismatch comes from NL phase modulation)



Four-wave mixing (FWM), two pump waves

dE3 3 (1)3)((3)
— = —i- E.E,E;
dz l4 nc 17274
(19.13)
E4 _ 3(1)4)((3) E. E.E*
dz 4 nc 17273
n.
Introduce a new field variables (as in Lecture 5): A= \/;Ei
l
Then it simplifies to:
dA
4 S = igAAyAL
dz dz where
(19.10)
dAy, _ .
d2A; d2A
> — 243 = and *_r24, =
dz? 3 dz2 4=0

3¢ (w0030,
g 4c USROS AU

where F:|A1||A2|g
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Four-wave mixing (FWM), two pump waves

Similarity to the 3-wave optical parametric amplification (Lecture 12)
The general solutions T o )
to this equation are: et ? orthe same as a combination of cosh(I'z) & sinh(T'z)
W3 W1 Wz Wy
Az = azcosh(['z)+b3sinh(T'z)

Look for solutions in the form:
A4 = a4COSh(FZ)+b4Sinh(FZ) *

R <

Initial conditions: A3 = Az

A4=0

] Generation of new frequency
Solution: Az = A3 COSh(FZ) components via four-wave mixing.

o (19.14)
A, = —iAj5, sinh(['z)

The 4-photon OPA uses four-wave mixing to provide optical gain of the 'seed’ at w3. Simultneously, the wave at w, grows from zero. For each photon created at w3
a photon at w, is created

The corresponding photon-flux densities are: In terms of intensities:
®; = P;ycosh?(I'z) I3 = I35cosh?(T'z)
19.16)
, (19.14) o (
b, = P3psinh?(I'z) I, = — I, sinh?(T'z)
3

These expressions are symmetric under the interchange of wz and w;,



Four-wave mixing (FWM), one pump wave

(a degenerate four-wave mixing)

One strong wave wq creates two new waves w3 Wy

in a 4-wave process W)+ W1 = w3+ Wy

total field E(t) = %( E,et“1t + FE et@st + F,el®4t 4 c.¢))

total NL

polariz P (t) = %60)5(3)( Eje'®1t + Eze'@st 4 E e'®st + ¢ c)3

Now let us pick only components with +w5; and +w, - due to interaction of all 3 waves

P (D], = %60)((3)( 3EE{E;et®st + c.c.)= geo)((3)(E12EZei“)3t +c.c.)

73,\,L(t)|w4 = %EOX(S)( 3EE{Ejet®st +c.c.)= SEOXB)(ElZE;ei‘“‘*t +c.c.)

v
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Four-wave mixing (FWWM), one pump wave

note that this coeff is 2 times less

Phase matched, no pump depletion: than in the non-degenerate case

d A __ iga A, A /
— =—
dz dz gf1fi2tia where _ 3y®  [wiw,wsw, ~ 3y w?
* d A4 _ i " (1914) g 8c NiNyN3zNy 8cn?
dz igA14,45
d?A; d2A
_T2A. = 24 _— _ 2
> 72 [“A; =0 and 772 ['“A, =0 where I'=|A44|°g

Exponential gain coefficient I is proportional to I; and y®

The corresponding photon-flux densities are: In terms of intensities:

d3 = d3pcosh?(I'z) I3 = I3gcosh?(I'z)

| 047 (19.18)
d, = Dsinh2(l'z) Iy = %130 sinh*(T'z)
W3




