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Third harmonic generation. Nonlinear absorption. 

Parametric processes due to 4-wave mixing. 

Lecture 19
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Third harmonic 
generation
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Third harmonic generation (THG)

Assume that the input field has only one frequency component:  𝜔

Also assume a scalar version of the 3-wave interaction : all fields are along one axis (e.g. x-axis) 

𝑃!
(#) = 𝜖%$

&,(,)

𝜒!&()𝐸&𝐸(𝐸)

𝐸(𝑡) =
1
2𝐸!𝑒

"#$ + 𝑐. 𝑐.

𝑃 ! (𝑡) = "
# (𝑃(3𝜔)𝑒

$!%& + 𝑐. 𝑐.)
We will now look for the nonlinear polarization component at angular frequency ±3𝜔	in the form

à scalar version 𝑃 # 𝑡 = 𝜖%𝜒 # 𝐸#(𝑡)

𝑃 # 𝑡 = 𝜖%𝜒 # (*+𝐸*𝑒
!,- + 𝑐. 𝑐. )#= = *

. 𝜖%𝜒
# (𝐸*#𝑒#!,- + 3(𝐸*𝐸*∗)𝐸*𝑒!,- +𝑐. 𝑐. ) =

=
1
4 𝜖%𝜒

# (
1
2𝐸*

# + 𝑐. 𝑐)

NL polarization: 

pick only components with ±3𝜔

à 𝑃 3𝜔 =
1
4 𝜖%𝜒

# 𝐸*#

Fourier component

𝜒 ( = 𝜒))))
(()

(19.1)
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Third harmonic generation (THG)

𝑃 3𝜔 = *
0 𝜖%𝜒

# 𝐸*#(𝜔)

Now use Slowly Varying Envelope Approximation (SVEA) from Lecture 2 to calculate the THG output :

𝜕𝐸(3𝜔)
𝜕𝑧 	=−

𝑖𝜔
2𝑛𝑐𝜖%

 𝑃12
In the slowly varying 

envelope (SVEA) 
approximation 

34,(5)
35 = − !,

.67 𝜒
# 𝐸*#(𝜔)𝑒8!∆(5

𝐸 3𝜔 = 𝐸((𝑧)

In the low conversion limit:  
𝐸(≪ 𝐸!, 𝐸! = 𝑐𝑜𝑛𝑠𝑡

phase mismatch
Δ𝑘 = 𝑘( 	− 3𝑘!
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Third harmonic generation (THG)

𝐸#(3𝜔) = −𝑖
𝜔
8𝑛𝑐 𝜒

# 𝐸*#
	𝐿

|𝐸#(3𝜔)|2 = (
𝜔
8𝑛𝑐 𝜒

# )+|𝐸*|:𝐿+

TH field grows linearly 
with length

Easy to integrate
if ∆𝑘=0: 

Now recall that the intensity 𝐼 = "
#
𝑐𝜖)𝑛|𝐸|# |𝐸|- = 2𝐼/𝑐𝜖.𝑛à

𝐼#, =
𝜔
8𝑛𝑐 𝜒

#
+
(
2

𝑐𝜖%𝑛
)+𝐼,#𝐿+ = (

𝜔
4𝜖%𝑛+𝑐+

𝜒 # 	)+𝐼,#𝐿+

𝑃#, = (
𝜔

4𝜖%𝑛+𝑐+
𝜒 # 	)+

𝑃,#𝐿+

𝐴;<<+

𝑃#,
𝐴;<<

= (
𝜔

4𝜖%𝑛+𝑐+
𝜒 # 	)+(

𝑃,
𝐴;<<

)#𝐿+

– scales as as 𝑃#(	 and grows 
quadratically with length

Power  𝑃 = 𝐼×𝐴/00 𝐼 =
𝑃

𝐴/00
à

(19.2)

(19.3)Power
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Third harmonic generation (THG)

phase matching
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Third harmonic generation (THG)

34,(5)
35 = − !,

.67 𝜒
# 𝐸*#(𝜔)𝑒8!∆(5

and low conversion limit:  
𝐸(≪ 𝐸!, 	 𝐸! ≈ 𝑐𝑜𝑛𝑠𝑡

|𝐸#|2 = (
𝜔

4𝑛𝑐∆𝑘 𝜒
# )+|𝐸*|:

𝛥𝑘 ≠ 0

field intensity 

For

𝐸((3𝜔) = − "#
123 𝜒

( 𝐸!((𝜔)∫.
4 𝑒5"∆78𝑑𝑧 = − #

923∆7 𝜒
( 𝐸!((𝜔)

− "
∆7 (1 − 𝑒

5"∆74) = − -"
∆7 	 (at L=Lc=𝜋/∆𝑘)

Now recall that the intensity 𝐼 = "
#
𝑐𝜖)𝑛|𝐸|# |𝐸|- = 2𝐼/𝑐𝜖.𝑛à
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Third harmonic generation (THG)

for intensities: 2𝐼#,/𝑐𝜖%𝑛 = (
𝜔

4𝑛𝑐∆𝑘
𝜒 # )+(2𝐼,/𝑐𝜖%𝑛)#

𝐼#, = (
𝜔

2𝜖%𝑛+𝑐+∆𝑘
𝜒 # 	)+𝐼,#

Power  𝑃 = 𝐼×𝐴/00

𝑃#,
𝐴;<<

= (
𝜔

2𝜖%𝑛+𝑐+∆𝑘
𝜒 # 	)+(

𝑃,
𝐴;<<

)#

𝑃#, = (
𝜔

2𝜖%𝑛+𝑐+∆𝑘
𝜒 # 	)+

𝑃,#

𝐴;<<+

– grows as  𝑃#( over one coherence length

𝐼 =
𝑃

𝐴/00à

(19.5)

(19.4)
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Third harmonic generation in a fiber

Now let us take a concrete example: THG 
in a fiber 1.56 µm ->  0.52 µm (green)

𝑃#, = ( ,
+==6>7>∆(

𝜒 # 	)+ >?,

?@AA>
 =

∆𝑘 = 2𝜋
𝑛3
𝜆3 − 3

𝑛1
𝜆1 = 2𝜋

1.4613
0.52 − 3

1.4439
1.56 = 0.21 µm−1 = 2.1e5 m−1

(coh. length    
@
∆( ~ 15 µm)

Assume a fused silica fiber with 𝐴/00=(10µm)2   à   10-10 m2 

Assume 1-W CW pump laser at frequency ω   (1.56 µm) 

=( 1.2e15*2.5e-22  /2 /8.85e-12/ 1.46^2 /3e8^2/2.1e5 )^2  *1/ 1e-10^2=

= 1.7 x10-17 W à   45 photons per second

*  green photon at 0.52 µm is:   ℏ𝜔 = 3.8 x10-19 J 

is it 
practical ?

Fused silica:    𝜒(#)= 2.5×108++	𝑚+/𝑉2              
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Two-photon 
absorption
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Nonlinear susceptibility χ(3), quantum mechanical model 

𝜒(1) ≈ 2
3!ℏ"

5#$5#%5%"5"$
(6"#786)(6%#786)(6%#76)

4

3

2

 

1

𝜔

𝜔

see e.g. Boyd, Stegeman

𝜒(#) - is the sum of many different terms, but let us 
take the term that is close to resonance 1-3:

à 𝜒(1) ≈ 2
3!ℏ"

5#$5#%5%"5"$
(6"#786)(6%#7869:;%#)(6%#76)

= −𝑖 2
3!ℏ"

<
;%#

5#$5#%5%"5"$
(6"#786)(6%#76)

added damping term

𝐼𝑚{𝜒(#)} = − 1
==ℏ,

*
B>B

CBCCB>C>,C,C
(,,B8+,)(,>B8,)

 
2𝛾31

2ω detuning

sharp 
Lorentz 
function

2-photon transitions can take place where 1-photon 
transitions  may be forbidden  

(19.6)

|	𝐼𝑚{𝜒(!)}	|

At 2-photon 
resonance 1-3 𝑅𝑒{𝜒(#)} = 0
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Two-photon absorption

34(5)
35 	=− !,7

+6  𝜇%𝑃 = − !,
+D=76

 𝑃 (2.3)
Recall slowly varying 
envelope approximation 
(SVEA) equation

𝑃 𝜔 =
3
4 𝜖)𝜒

! |𝐸" 𝜔 |#𝐸" 𝜔 (17.3)
Recall NL polarization for the 
𝜔 = 𝜔 + 𝜔 − 𝜔 process

Hence we have at 1-2 
2-photon resonance: 𝜕𝐸

𝜕𝑧 	= −
𝑖𝜔

2𝜀.𝑐𝑛
 𝑃 = −

𝑖𝜔
2𝜀.𝑐𝑛

3
4 𝜖.𝜒

( |𝐸|-𝐸

= −
𝑖3𝜔
8𝑛𝑐  {−𝑖|𝐼𝑚(𝜒 ( |} 𝐸 -𝐸 = −

3𝜔
8𝑛𝑐  |𝐼𝑚(𝜒 ( | 𝐸 -𝐸

= −
3𝜔
8𝑛𝑐

2𝐼
𝑐𝜖.𝑛

|𝐼𝑚(𝜒 ( |𝐸 = −
3𝜔

4𝜖.𝑛-𝑐-
 𝐼|𝐼𝑚(𝜒 ( |𝐸

𝐼 =
1
2 𝑐𝜖!𝑛|𝐸|

"

𝜕𝐸
𝜕𝑧 	= −𝛼#,𝐼𝐸 𝛼-D =

3𝜔
4𝜖.𝑛-𝑐-

 |𝐼𝑚(𝜒 ( |

𝜕𝐼
𝜕𝑧 	= −𝛼#𝐼# 𝛼- =

3𝜔
2𝜖.𝑛-𝑐-

 |𝐼𝑚(𝜒 ( |

(from L17) 

(19.7)

(from L2) 
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Two-photon absorption (another way to derive)
How does the power change if 𝐼𝑚{𝜒(()} ≠ 0? Power ~ |𝐸 𝜔 |- = 	𝐸 𝜔 𝐸∗ 𝜔

𝑑
𝑑𝑧 |𝐸 𝜔 |- =

𝑑
𝑑𝑧 𝐸 𝜔 𝐸∗ 𝜔 = 𝐸∗

𝑑𝐸
𝑑𝑧 + 𝐸

𝑑𝐸∗

𝑑𝑧 = 𝐸∗ −𝑖
3𝜔
8𝑛𝑐 (−𝑖	|𝐼𝑚{𝜒

( }|) 𝐸 -𝐸 + 𝐸 −𝑖
3𝜔
8𝑛𝑐 (−𝑖	|𝐼𝑚{𝜒

( }|) 𝐸 -𝐸∗ =

power is absorbed if 𝜒 (  
has imaginary portion 

𝐼𝑚{𝜒 # } = −|𝐼𝑚{𝜒 # }|

= −
3𝜔
4𝑛𝑐 𝐸

9	|𝐼𝑚{𝜒 ( }|

2
𝑐𝜖.𝑛

𝑑𝐼
𝑑𝑧 = −

3𝜔
4𝑛𝑐 (

2𝐼
𝑐𝜖.𝑛

)-	|𝐼𝑚{𝜒 ( }|

Recall that the intensity   𝐼 = "
# 𝑐𝜖)𝑛|𝐸|

# à |𝐸|- =
2𝐼
𝑐𝜖.𝑛

𝑑𝐼
𝑑𝑧 = −

3𝜔
2𝑛-𝜖.𝑐-

	 |𝐼𝑚{𝜒 ( }|	𝐼- = −𝛼-𝐼-

𝛼- =
3𝜔

2𝜖.𝑛-𝑐-
	 |𝐼𝑚{𝜒 ( }| (19.8)Two-photon absorption 

(2PA) coefficint 
same as (19.7)  !

2PA units: cm/W or m/W
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Two-photon absorption

𝑑𝐼
𝑑𝑧 = −𝛼-𝐼-It is easy to integrate 

to get :             𝐼 𝑧 = E=
*FE=G>5

𝛼-𝑧

𝐼 𝑧 /𝐼.

the decay rate is slower 
than exponential

(19.9)

𝜔!

𝜔-

Non-degenerate 2PA 𝑑𝐼!
𝑑𝑧 	~	 −𝛼-

2F25G/H/2.𝐼! 𝐼-

𝑑𝐼-
𝑑𝑧 =

𝜔-	
𝜔!

𝑑𝐼!
𝑑𝑧 	

2-photon absorption (2PA) is a  𝜒(() process:   𝜔 = 𝜔 + 𝜔 − 𝜔
3-photon absorption (3PA) is a  𝜒(J) process:   𝜔 = 𝜔 + 𝜔 − 𝜔 + 𝜔 − 𝜔
4-photon absorption (4PA) is a  𝜒(K) process:   𝜔 = 𝜔 + 𝜔 − 𝜔 +𝜔 − 𝜔 + 𝜔 − 𝜔
   ................... 

𝜔$ = 𝜔$ +𝜔" −𝜔"
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Two-photon absorption

Two-photonOne-photon



16

Is the energy conserved 
in the self-phase 

modulation (SPM) 
process?
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Is the energy conserved in the SPM process?

𝐼𝑚{𝜒(!)} = 0 
𝑁𝑜𝑤	𝜒(!)𝑖𝑠	𝑟𝑒𝑎𝑙 (far from resonances)

34(5)
35 	=− !,7

+6  𝜇%𝑃 = − !,
+D=76

 𝑃

𝑃 𝜔 =
3
4 𝜖)𝜒

! |𝐸" 𝜔 |#𝐸" 𝜔

Slowly varying envelope 
approximation (SVEA) 
equation

𝑑𝐸(𝑧, 𝜔)
𝑑𝑧 = −𝑖

3𝜔
8𝑛𝑐 𝜒

! |𝐸 𝜔 |#𝐸 𝜔 (19.10)

Does the power change as a result of SPM? Power ~ |𝐸 𝜔 |- = 	𝐸 𝜔 𝐸∗ 𝜔

𝑑
𝑑𝑧 |𝐸 𝜔 |- =

𝑑
𝑑𝑧 𝐸 𝜔 𝐸∗ 𝜔 = 𝐸∗

𝑑𝐸
𝑑𝑧 + 𝐸

𝑑𝐸∗

𝑑𝑧 = 𝐸∗ −𝑖
3𝜔
8𝑛𝑐 𝜒

( 𝐸 -𝐸 + 𝐸 +𝑖
3𝜔
8𝑛𝑐 𝜒

( 𝐸 -𝐸∗ = 0

No power change in SPM if 𝜒 (  is real 

𝜒 ( =𝑅𝑒{𝜒 ( } 
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Parametric vs non-parametric process

In a parametric process, population can be removed 
from the ground state only for those brief intervals of 
time when it resides in a virtual level. According to the 
uncertainty principle, population can reside in a virtual 
level for a time interval of the order of  ~ ℏH4, where Δ𝐸 
is the energy difference between the virtual level and 
the nearest real level. 

Photon energy is always conserved in a parametric 
process

𝜔( = 𝜔!+𝜔-

𝜔9 = 𝜔!+𝜔-+𝜔(

𝜔( = 𝜔!+𝜔--𝜔(

3-photon process

self-phase modulation 
when all ω’s are the same 

4-photon process

4-photon process
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Parametric processes due to 
four-wave mixing (FWM)
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Four-wave mixing (FWM), two pump waves

𝜔(	 𝝎𝟏	 𝝎𝟐	 𝜔9	
We have two strong waves 𝝎𝟏	 𝝎𝟐

that can create two new waves 𝜔(	 𝜔9

in a 4-wave process 𝝎𝟏	 +	 𝝎𝟐 	 =	𝜔( + 	𝜔9	

ℰ(𝑡) = "
#
(	𝐸"𝑒$%#& + 𝐸#𝑒$%$& + 𝐸!𝑒$%%& + 𝐸-𝑒$%&& + 𝑐. 𝑐.)

𝒫./(𝑡) =
"
0
𝜖)𝜒 ! (	𝐸"𝑒$%#& + 𝐸#𝑒$%$& + 𝐸!𝑒$%%& + 𝐸-𝑒$%&& + 𝑐. 𝑐.)3

total field

total NL 
polariz.

Now let us pick only components with ±𝜔( and ±𝜔9  - due to interaction of all 4 waves 

𝒫./ 𝑡 |𝜔! =
"
0
𝜖)𝜒 ! (	6𝐸"𝐸#𝐸-∗𝑒$%%& + 𝑐. 𝑐.)=

!
-
𝜖)𝜒 ! (	𝐸"𝐸#𝐸-∗𝑒$%%& + 𝑐. 𝑐. )

𝒫./ 𝑡 |𝜔" =
"
0 𝜖)𝜒

! (	6𝐸"𝐸#𝐸!∗𝑒$%%& + 𝑐. 𝑐.)=
!
- 𝜖)𝜒

! (	𝐸"𝐸#𝐸!∗𝑒$%%& + 𝑐. 𝑐. )

83 =512 terms 𝝎𝟏

𝝎𝟐 𝝎𝟑

𝝎𝟒

Phase matching 
is essential 
here; will talk 
about it in the 
next lecture.
Assume Δ𝑘=0 
for now
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Four-wave mixing (FWM), two pump waves

𝑃 𝜔! =
3
2 𝜖)𝜒

! (	𝐸"𝐸#𝐸-∗)

à 
(19.11)

Fourier components for 𝑃%&

𝑃 𝜔- =
3
2 𝜖)𝜒

! (	𝐸"𝐸#𝐸!∗)

Now plug them into SVEA eaquation:
𝜕𝐸(𝜔")
𝜕𝑧 	= −

𝑖𝜔"
2𝑛𝑐𝜖.

 𝑃P4(𝜔")

to get:

𝑑𝐸(𝜔!)
𝑑𝑧 	=−

𝑖𝜔!
2𝑛𝑐𝜖)

3
2 𝜖)𝜒

! (	𝐸"𝐸#𝐸-∗)𝑒2345 = −𝑖
3
4
𝜔!𝜒 !

𝑛𝑐 	𝐸"𝐸#𝐸-∗𝑒2345

Assume no pump depletion 𝐸!, 𝐸- - const  
and Δ𝑘=0  (an additional phase mismatch comes from NL phase modulation) 

𝑘! 𝑘-

𝑘( 𝑘9

Δ𝑘 = 𝑘! + 𝑘- − 𝑘( − 𝑘9+. . .

ℏ𝜔!

ℏ𝜔-

ℏ𝜔(

ℏ𝜔9

interaction of 4 photons

𝑑𝐸(𝜔-)
𝑑𝑧 	=−

𝑖𝜔-
2𝑛𝑐𝜖)

3
2 𝜖)𝜒

! (	𝐸"𝐸#𝐸!∗)𝑒2345 = −𝑖
3
4
𝜔-𝜒 !

𝑛𝑐 	𝐸"𝐸#𝐸!∗𝑒2345
(19.12)

.. plus NL phase modulation terms
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Four-wave mixing (FWM), two pump waves
𝑑𝐸!
𝑑𝑧 	=− 𝑖

3
4
𝜔!𝜒 !

𝑛𝑐 	𝐸"𝐸#𝐸-∗

	𝐸-
𝑑𝑧 	=− 𝑖

3
4
𝜔-𝜒 !

𝑛𝑐 	𝐸"𝐸#𝐸!∗
𝐸# = 𝐸 𝜔# 	

......

.....

(19.13)

g = !6 %

-7
%#%$%%%&
8#8$8%8&

 

𝐴𝑖 =
𝑛"
𝜔"
𝐸𝑖Introduce a new field variables (as in Lecture 5): 

Then it simplifies to:

𝑑	𝐴!
𝑑𝑧 	=− 𝑖𝑔𝐴"𝐴#𝐴-∗

𝑑	𝐴-
𝑑𝑧 	=− 𝑖𝑔𝐴"𝐴#𝐴!∗

where

𝑑
𝑑𝑧
	

*

𝑑2𝐴#
𝑑𝑧2 − Γ

+𝐴# = 0à
𝑑2𝐴0
𝑑𝑧2 − Γ

+𝐴0 = 0and where

(19.10)

Γ = 	𝐴* |	𝐴+|𝑔
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Four-wave mixing (FWM), two pump waves

𝑒±T8    or the same as a combination of  𝑐𝑜𝑠h(Γ𝑧) & 𝑠𝑖𝑛h(Γ𝑧)

𝐴( = 𝑎(𝑐𝑜𝑠h(Γ𝑧)+𝑏(sinh(Γ𝑧)

𝐴9 = 𝑎9𝑐𝑜𝑠h(Γ𝑧)+𝑏9sinh(Γ𝑧)
Look for solutions in the form:

The general solutions 
to this equation are:

Generation of new frequency 
components via four-wave mixing. 

Similarity to the 3-wave optical parametric amplification (Lecture 12)

Initial conditions: 𝐴( = 𝐴(.
𝐴9 = 0

Solution: 𝐴! = 𝐴!)	𝑐𝑜𝑠h(Γ𝑧)
𝐴- = −𝑖𝐴!)∗ 	sinh(Γ𝑧)

(19.14)

The 4-photon OPA uses four-wave mixing to provide optical gain of the ’seed’ at 𝜔!. Simultneously, the wave at 𝜔" grows from zero. For each photon created at 𝜔! 
a photon at 𝜔" is created  

The corresponding photon-flux densities are:

Φ3 = Φ30𝑐𝑜𝑠h2(Γ𝑧)

Φ4 = Φ30𝑠𝑖𝑛ℎ2(Γ𝑧)

In terms of intensities:

𝐼3 = 𝐼30	𝑐𝑜𝑠h2(Γ𝑧)

𝐼4 =
𝜔-
𝜔!

𝐼30	𝑠𝑖𝑛ℎ2(Γ𝑧)
(19.14) (19.16)

These expressions are symmetric under the interchange of 𝜔( and 𝜔9
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𝜔(	 𝝎𝟏	 𝜔9	
One strong wave 𝝎𝟏	 creates two new waves 𝜔(	 𝜔9

in a 4-wave process 𝝎𝟏	+	𝝎𝟏 	=	𝜔( + 	𝜔9	

ℰ(𝑡) = "
#
(	𝐸"𝑒$%#& + 𝐸!𝑒$%%& + 𝐸-𝑒$%&& + 𝑐. 𝑐.)

𝒫./(𝑡) =
"
0 𝜖)𝜒

! (	𝐸"𝑒$%#& + 𝐸!𝑒$%%& + 𝐸-𝑒$%&& + 𝑐. 𝑐.)3

total field

total NL 
polariz.

Now let us pick only components with ±𝜔( and ±𝜔9  - due to interaction of all 3 waves 

𝒫./ 𝑡 |𝜔! =
"
0
𝜖)𝜒 ! (	3𝐸"𝐸"𝐸-∗𝑒$%%& + 𝑐. 𝑐.)=

!
0
𝜖)𝜒 ! (𝐸"#𝐸-∗𝑒$%%& + 𝑐. 𝑐. )

𝒫./ 𝑡 |𝜔" =
"
0
𝜖)𝜒 ! (	3𝐸"𝐸"𝐸!∗𝑒$%&& + 𝑐. 𝑐.)=

!
0
𝜖)𝜒 ! (𝐸"#𝐸!∗𝑒$%&& + 𝑐. 𝑐. )

(a degenerate four-wave mixing)
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g = !6 %

07
%#%$%%%&
8#8$8%8&

≈ !6 % %$

078$
 

𝑑	𝐴!
𝑑𝑧 	=− 𝑖𝑔𝐴"𝐴#𝐴-∗

𝑑	𝐴-
𝑑𝑧 	=− 𝑖𝑔𝐴"𝐴#𝐴!∗

where

𝑑
𝑑𝑧	

*

𝑑2𝐴#
𝑑𝑧2 − Γ

+𝐴# = 0à
𝑑2𝐴0
𝑑𝑧2 − Γ

+𝐴0 = 0and Γ = |	𝐴*|+𝑔where

(19.14)

The corresponding photon-flux densities are:

Φ3 = Φ30𝑐𝑜𝑠h2(Γ𝑧)

Φ4 = Φ30𝑠𝑖𝑛ℎ2(Γ𝑧)

In terms of intensities:

𝐼3 = 𝐼30	𝑐𝑜𝑠h2(Γ𝑧)

𝐼4 =
𝜔-
𝜔!

𝐼30	𝑠𝑖𝑛ℎ2(Γ𝑧)
(19.17) (19.18)

Exponential gain coefficient 𝚪 is proportional to 𝐼! and 𝜒 (  

Phase matched, no pump depletion: 
note that this coeff is 2 times less 
than in the non-degenerate case 


