## Lecture 19

Third harmonic generation. Nonlinear absorption.
Parametric processes due to 4 -wave mixing.

Third harmonic generation

## Third harmonic generation (THG)

Assume that the input field has only one frequency component: $\omega$

$$
E(t)=\frac{1}{2} E_{1} e^{i \omega t}+c . c .
$$

Also assume a scalar version of the 3-wave interaction : all fields are along one axis (e.g. x-axis)
We will now look for the nonlinear polarization component at angular frequency $\pm 3 \omega$ in the form

$$
P^{(3)}(t)=\frac{1}{2}\left(P(3 \omega) e^{i 3 \omega t}+c . c .\right)
$$

NL polarization:

$$
\begin{gather*}
P_{i}^{(3)}=\epsilon_{0} \sum_{j, k, l} \chi_{i j k l} E_{j} E_{k} E_{l} \\
P^{(3)}(t)=\epsilon_{0} \chi^{(3)}\left(\frac{1}{2} E_{1} e^{i \omega t}+c . c .\right)^{3}==\frac{1}{8} \epsilon_{0} \chi^{(3)}\left(E_{1}^{3} e^{3 i \omega t}+3\left(E_{1} E_{1}^{*}\right) E_{1} e^{i \omega t}+c . c .\right)= \\
\text { pick only components with } \pm 3 \omega \\
=\frac{1}{4} \epsilon_{0} \chi^{(3)}\left(\frac{1}{2} E_{1}^{3}+c . c\right) \\
\rightarrow  \tag{19.1}\\
\\
P(3 \omega)=\frac{1}{4} \epsilon_{0} \chi^{(3)} E_{1}^{3}
\end{gather*}
$$

## Third harmonic generation (THG)

Now use Slowly Varying Envelope Approximation (SVEA) from Lecture 2 to calculate the THG output :

$$
\begin{equation*}
\frac{\partial E(z)}{\partial z}=-\frac{i \omega c}{2 n} \mu_{0} P \tag{2.3}
\end{equation*}
$$

In the slowly varying envelope (SVEA) approximation
perturbation polarization

$$
P(3 \omega)=\frac{1}{4} \epsilon_{0} \chi^{(3)} E_{1}^{3}(\omega)
$$


phase mismatch

In the low conversion limit:
$E_{3} \ll E_{1}, E_{1}=$ const

$$
\frac{\partial E_{3}(z)}{\partial z}=-\frac{i \omega}{8 n c} \chi^{(3)} E_{1}^{3}(\omega) e^{-i \Delta k z}
$$

## Third harmonic generation (THG)

Easy to integrate if $\Delta k=0$ :

$$
E_{3}(3 \omega)=-i \frac{\omega}{8 n c} \chi^{(3)} E_{1}^{3} L \quad \begin{aligned}
& \text { TH field grows linearly } \\
& \text { with length }
\end{aligned}
$$

$$
\left|E_{3}(3 \omega)\right|^{2}=\left(\frac{\omega}{8 n c} \chi^{(3)}\right)^{2}\left|E_{1}\right|^{6} L^{2}
$$

Now recall that the intensity $I=\frac{1}{2} c \epsilon_{0} n|E|^{2} \quad \rightarrow \quad|E|^{2}=2 I / c \epsilon_{0} n$

$$
\begin{gather*}
I_{3 \omega}=\left(\frac{\omega}{8 n c} \chi^{(3)}\right)^{2}\left(\frac{2}{c \epsilon_{0} n}\right)^{2} I_{\omega}{ }^{3} L^{2}=\left(\frac{\omega}{4 \epsilon_{0} n^{2} c^{2}} \chi^{(3)}\right)^{2} I_{\omega}{ }^{3} L^{2}  \tag{19.2}\\
\text { Power } P=I \times A_{e f f} \quad \rightarrow \quad I=\frac{P}{A_{e f f}} \\
\frac{P_{3 \omega}}{A_{e f f}}=\left(\frac{\omega}{4 \epsilon_{0} n^{2} c^{2}} \chi^{(3)}\right)^{2}\left(\frac{P_{\omega}}{A_{e f f}}\right)^{3} L^{2}
\end{gather*}
$$

Power

$$
\begin{equation*}
P_{3 \omega}=\left(\frac{\omega}{4 \epsilon_{0} n^{2} c^{2}} \chi^{(3)}\right)^{2} \frac{P_{\omega}^{3} L^{2}}{A_{e f f}{ }^{2}} \tag{19.3}
\end{equation*}
$$

- scales as as $P_{\omega}{ }^{3}$ and grows quadratically with length


## Third harmonic generation (THG)

## Refractive indices, phase-matching directions and third order nonlinear coefficients of rutile $\mathrm{TiO}_{2}$ from third harmonic generation

Adrien Borne, Patricia Segonds, Benoit Boulanger," Corinne Félix, and Jérôme Debray Institut Néel CNRS - Université Joseph Fourier, 25 rue des Martyrs, BP 166, F38042 Grenoble Cedex 9, France benoit boulanger@grenoble curs fr

Abstract: Experiments of third harmonic generation in rutile $\mathrm{TiO}_{2}$ allowed us to determine the phase-matching angles and the refractive indices of the crystal up to 4500 nm . We also showed that $\chi_{16}$ and $\chi_{18}$ coefficients of the third order electric susceptibility tensor exhibit opposite signs, and tha $\left|\chi_{I S}(616.7 \mathrm{~nm})\right|=9.7 \times 10^{-20} \mathrm{~m}^{2} \mathrm{~V}^{-2}$.
O2012 Optical Society of America


$$
\omega^{(o)}+\omega^{(e)}+\omega^{(e)} \rightarrow 3 \omega^{(o)}
$$

phase matching

Fig. 3. Ordinary $\mathrm{n}_{\mathrm{o}}$ and extraordinary $\mathrm{n}_{\mathrm{e}}$ principal refractive indices of $\mathrm{TiO}_{2}$ as a function of wavelength from present work in solid lines, and from [6-9] in symbols (experiments) and dashed lines (calculations).

Third harmonic generation (THG)

$$
\text { For } \quad \Delta k \neq 0
$$

and low conversion limit:
$E_{3} \ll E_{1}, \quad E_{1} \approx$ const

$$
\begin{aligned}
& \frac{\partial E_{3}(z)}{\partial z}=-\frac{i \omega}{8 n c} \chi^{(3)} E_{1}^{3}(\omega) e^{-i \Delta k z} \\
& E_{3}(3 \omega)=-\frac{i \omega}{8 n c} \chi^{(3)} E_{1}^{3}(\omega) \underbrace{}_{\int_{0}^{L} e^{-i \Delta k z} d z}=-\frac{\omega}{4 n c \Delta k} \chi^{(3)} E_{1}^{3}(\omega) \\
& \left\lvert\, E_{1} \approx \frac{i}{\Delta k}\left(1-e^{-i \Delta k L}\right)=-\frac{2 i}{\Delta k} \quad\left(a t L=L_{c}=\pi / \Delta k\right)\right. \\
& \text { Now recall that the intensity } \left.I=\frac{1}{2} c \epsilon_{0} n|E|^{2} \quad \rightarrow \quad \rightarrow \quad \chi^{(3 n c \Delta k}\right)^{2}\left|E_{1}\right|^{6} \quad|E|^{2}=2 I / c \epsilon_{0} n
\end{aligned}
$$

Third harmonic generation (THG)
for intensities:

$$
\begin{gather*}
2 I_{3 \omega} / c \epsilon_{0} n=\left(\frac{\omega}{4 n c \Delta k} \chi^{(3)}\right)^{2}\left(2 I_{\omega} / c \epsilon_{0} n\right)^{3} \\
I_{3 \omega}=\left(\frac{\omega}{2 \epsilon_{0} n^{2} c^{2} \Delta k} \chi^{(3)}\right)^{2} I_{\omega}{ }^{3} \tag{19.4}
\end{gather*}
$$

Power $P=I \times A_{\text {eff }} \quad \rightarrow \quad I=\frac{P}{A_{\text {eff }}}$

$$
\frac{P_{3 \omega}}{A_{e f f}}=\left(\frac{\omega}{2 \epsilon_{0} n^{2} c^{2} \Delta k} \chi^{(3)}\right)^{2}\left(\frac{P_{\omega}}{A_{e f f}}\right)^{3}
$$

$$
\begin{equation*}
P_{3 \omega}=\left(\frac{\omega}{2 \epsilon_{0} n^{2} c^{2} \Delta k} \chi^{(3)}\right)^{2} \frac{P_{\omega}^{3}}{A_{e f f}{ }^{2}} \tag{19.5}
\end{equation*}
$$

- grows as $P_{\omega}{ }^{3}$ over one coherence length


## Third harmonic generation in a fiber

Now let us take a concrete example: THG in a fiber $1.56 \mu \mathrm{~m}$-> $0.52 \mu \mathrm{~m}$ (green)

Fused silica: $\quad \chi^{(3)}=2.5 \times 10^{-22} \mathrm{~m}^{2} / V^{2}$

$$
\begin{array}{r}
\Delta k=2 \pi\left(\frac{n 3}{\lambda 3}-3 \frac{n 1}{\lambda 1}\right)=2 \pi\left(\frac{1.4613}{0.52}-3 \frac{1.4439}{1.56}\right)=0.21 \mu \mathrm{~m}^{-1}=2.1 \mathrm{e}^{2} \mathrm{~m}^{-1} \\
\text { (coh. length } \frac{\pi}{\Delta k} \sim 15 \mu \mathrm{~m} \text { ) }
\end{array}
$$

Assume a fused silica fiber with $A_{\text {eff }}=(10 \mu \mathrm{~m})^{2} \rightarrow 10^{-10} \mathrm{~m}^{2}$
Assume 1-W CW pump laser at frequency $\omega \quad(1.56 \mu \mathrm{~m})$

$$
\begin{aligned}
P_{3 \omega}=\left(\frac{\omega}{2 \epsilon_{0} n^{2} c^{2} \Delta k} \chi^{(3)}\right)^{2} \frac{P_{\omega}^{3}}{A_{e f f^{2}}}= & =\left(1.2 e 15^{*} 2.5 \mathrm{e}-22 / 2 / 8.85 \mathrm{e}-12 / 1.46^{\wedge} 2 / 3 e 8 \wedge / 2 / 2.1 \mathrm{e} 5\right)^{\wedge} 2 * 1 / 1 \mathrm{e}-10^{\wedge} 2= \\
=1.7 \times 10^{-17} \mathrm{~W} & \rightarrow 45 \text { photons per second }
\end{aligned}
$$

* green photon at $0.52 \mu \mathrm{~m}$ is: $\hbar \omega=3.8 \times 10^{-19} \mathrm{~J}$

Two-photon absorption

## Nonlinear susceptibility $\chi^{(3)}$, quantum mechanical model

see e.g. Boyd, Stegeman

$\chi^{(3)} \quad$ - is the sum of many different terms, but let us
take the term that is close to resonance 1-3:

$$
\chi^{(3)} \approx \frac{N}{\epsilon_{0} \hbar^{3}} \frac{\mu_{14} \mu_{12} \mu_{23} \mu_{34}}{\left(\omega_{31}-2 \omega\right)\left(\omega_{21}-2 \omega\right)\left(\omega_{21}-\omega\right)}
$$

$$
\rightarrow \chi^{(3)} \approx \frac{N}{\epsilon_{0} \hbar^{3}} \frac{\mu_{14} \mu_{12} \mu_{23} \mu_{34}}{\left(\omega_{31}-2 \omega\right)(\omega_{21}-2 \omega+\underbrace{\left.i \gamma_{21}\right)\left(\omega_{21}-\omega\right)}_{\text {added damping term }}}=-i \frac{N}{\epsilon_{0} \hbar^{3}} \frac{1}{\gamma_{21}} \frac{\mu_{14} \mu_{12} \mu_{23} \mu_{34}}{\left(\omega_{31}-2 \omega\right)\left(\omega_{21}-\omega_{2}\right.}
$$

$\cdots$

At 2-photon resonance 1-3

$$
\begin{align*}
& \operatorname{Im}\left\{\chi^{(3)}\right\}=-\frac{N}{\epsilon_{0} \hbar^{3}} \frac{1}{\gamma_{21}} \frac{\mu_{14} \mu_{12} \mu_{23} \mu_{34}}{\left(\omega_{31}-2 \omega\right)\left(\omega_{21}-\omega\right)}  \tag{19.6}\\
& \operatorname{Re}\left\{\chi^{(3)}\right\}=0
\end{align*}
$$

## Two-photon absorption

Recall slowly varying envelope approximation (SVEA) equation

Recall NL polarization for the $\omega=\omega+\omega-\omega$ process

$$
\begin{equation*}
\frac{\partial E(z)}{\partial z}=-\frac{i \omega c}{2 n} \mu_{0} P=-\frac{i \omega}{2 \varepsilon_{0} c n} P \tag{2.3}
\end{equation*}
$$

(from L2)

$$
\begin{equation*}
P(\omega)=\frac{3}{4} \epsilon_{0} \chi^{(3)}\left|E_{1}(\omega)\right|^{2} E_{1}(\omega) \tag{17.3}
\end{equation*}
$$

Hence we have at 1-2 2-photon resonance:

$$
\begin{gather*}
\frac{\partial E}{\partial z}=-\frac{i \omega}{2 \varepsilon_{0} c n} P=-\frac{i \omega}{2 \varepsilon_{0} c n} \frac{3}{4} \epsilon_{0} \chi^{(3)}|E|^{2} E \\
=-\frac{i 3 \omega}{8 n c}\left\{\left.-\left.i\left|\operatorname{Im}\left(\chi^{(3)} \mid\right\}\right| E\right|^{2} E=-\frac{3 \omega}{8 n c} \right\rvert\, \operatorname{Im}\left(\left.\chi^{(3)}| | E\right|^{2} E\right.\right. \\
=-\frac{3 \omega}{8 n c} \frac{2 I}{c \epsilon_{0} n} \left\lvert\, \operatorname{Im}\left(\chi^{(3)} \left\lvert\, E=-\frac{3 \omega}{4 \epsilon_{0} n^{2} c^{2}} \operatorname{IIm}\left(\chi^{(3)} \mid E\right.\right.\right.\right. \\
\left.\frac{\partial E}{\partial z}=-\alpha_{2}^{E} I E \quad \alpha_{2}^{E}=\frac{3 \omega}{4 \epsilon_{0} n^{2} c^{2}} \right\rvert\, \operatorname{Im}\left(\chi^{(3)} \mid\right. \\
\frac{\partial I}{\partial z}=-\alpha_{2} I^{2} c \epsilon_{0} n|E|^{2}  \tag{19.7}\\
\frac{\left.\alpha_{2}=\frac{3 \omega}{2 \epsilon_{0} n^{2} c^{2}} \right\rvert\, \operatorname{Im}\left(\chi^{(3)} \mid\right.}{}
\end{gather*}
$$

## Two-photon absorption (another way to derive)

$$
\begin{gathered}
\frac{d}{d z}|E(\omega)|^{2}=\frac{d}{d z} E(\omega) E^{*}(\omega)=E^{*} \frac{d E}{d z}+E \frac{d E^{*}}{d z}=E^{*}\left(-i \frac{3 \omega}{8 n c}\left(-i\left|\operatorname{Im}\left\{\chi^{(3)}\right\}\right|\right)|E|^{2} E\right)+E\left(-i \frac{3 \omega}{8 n c}\left(-i\left|\operatorname{Im}\left\{\chi^{(3)}\right\}\right|\right)|E|^{2} E^{*}\right)= \\
=-\frac{3 \omega}{4 n c}|E|^{4}\left|\operatorname{Im}\left\{\chi^{(3)}\right\}\right| \\
\text { Recall that the intensity } \left.I=\frac{1}{2} c \epsilon_{0}^{(3)}\right\}=-\left|\operatorname{Im}\left\{\chi^{(3)}\right\}\right| \\
\frac{2}{c \epsilon_{0} n} \frac{d I}{d z}=-\frac{3 \omega}{4 n c}\left(\frac{2 I}{c \epsilon_{0} n}\right)^{2}\left|\operatorname{Im}\left\{\chi^{(3)}\right\}\right| \\
\frac{d I}{d z}=-\frac{3 \omega}{2 n^{2} \epsilon_{0} c^{2}}\left|\operatorname{Im}\left\{\chi^{(3)}\right\}\right| I^{2}=-\alpha_{2} I^{2} \quad|E|^{2}=\frac{2 I}{c \epsilon_{0} n}
\end{gathered} \quad \rightarrow \quad \begin{aligned}
& \text { power is absorbed if } \chi^{(3)} \\
& \text { has imaginary portion }
\end{aligned}
$$

Two-photon absorption (2PA) coefficint

$$
\begin{equation*}
\alpha_{2}=\frac{3 \omega}{2 \epsilon_{0} n^{2} c^{2}}\left|\operatorname{Im}\left\{\chi^{(3)}\right\}\right| \tag{19.8}
\end{equation*}
$$

## Two-photon absorption

It is easy to integrate $\quad \frac{d I}{d z}=-\alpha_{2} I^{2}$

$$
\begin{equation*}
\text { to get : } \quad I(z)=\frac{I_{0}}{1+I_{0} \alpha_{2} z} \tag{19.9}
\end{equation*}
$$

the decay rate is slower than exponential


Non-degenerate 2PA

$$
\begin{aligned}
& \frac{d I_{1}}{d z} \sim-\alpha_{2}^{\text {non-degen. } I_{1} I_{2}} \\
& \frac{d I_{2}}{d z}=\frac{\omega_{2}}{\omega_{1}} \frac{d I_{1}}{d z}
\end{aligned}
$$



[^0]Two-photon absorption


## Is the energy conserved in the self-phase modulation (SPM) process?

## Is the energy conserved in the SPM process?

```
Now \(\chi^{(3)}\) is real (far from resonances)
\[
\operatorname{Im}\left\{\chi^{(3)}\right\}=0
\]
```

Slowly varying envelope approximation (SVEA) equation

$$
\frac{\partial E(z)}{\partial z}=-\frac{i \omega c}{2 n} \mu_{0} P=-\frac{i \omega}{2 \varepsilon_{0} c n} P
$$

$$
P(\omega)=\frac{3}{4} \epsilon_{0} \chi^{(3)}\left|E_{1}(\omega)\right|^{2} E_{1}(\omega)
$$

$$
\begin{equation*}
\frac{d E(z, \omega)}{d z}=-i \frac{3 \omega}{8 n c} \chi^{(3)}|E(\omega)|^{2} E(\omega) \tag{19.10}
\end{equation*}
$$

Does the power change as a result of SPM?

$$
\text { Power } \sim|E(\omega)|^{2}=E(\omega) E^{*}(\omega)
$$

$$
\begin{gathered}
\frac{d}{d z}|E(\omega)|^{2}=\frac{d}{d z} E(\omega) E^{*}(\omega)=E^{*} \frac{d E}{d z}+E \frac{d E^{*}}{d z}=E^{*}\left(-i \frac{3 \omega}{8 n c} \chi^{(3)}|E|^{2} E\right)+E\left(+i \frac{3 \omega}{8 n c} \chi^{(3)}|E|^{2} E^{*}\right)=0 \\
\chi^{(3)}=\operatorname{Re}\left\{\chi^{(3)}\right\}
\end{gathered}
$$

## Parametric vs non-parametric process

3-photon process

$$
\omega_{3}=\omega_{1}+\omega_{2}
$$

In a parametric process, population can be removed
 from the ground state only for those brief intervals of time when it resides in a virtual level. According to the
uncertainty principle, population can reside in a virtual level for a time interval of the order of $\sim \frac{\hbar}{\Delta E}$, where $\Delta E$ is the energy difference between the virtual level and the nearest real level.

4-photon process
$\omega_{4}=\omega_{1}+\omega_{2}+\omega_{3}$


Photon energy is always conserved in a parametric process

4-photon process
$\omega_{3}=\omega_{1}+\omega_{2}-\omega_{3}$
self-phase modulation
when all $\omega$ 's are the same


## Parametric processes due to four-wave mixing (FWM)

## Four-wave mixing (FWM), two pump waves

| We have two strong waves | $\omega_{1}$ | $\omega_{2}$ |
| :---: | :---: | :---: |
| that can create two new waves | $\omega_{3}$ | $\omega_{4}$ |

$$
\text { in a 4-wave process } \quad \omega_{1}+\omega_{2}=\omega_{3}+\omega_{4}
$$

Phase matching
is essential
here; will talk about it in the next lecture.
Assume $\Delta k=0$
for now
total field $\quad \mathcal{E}(t)=\frac{1}{2}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}+E_{3} e^{i \omega_{3} t}+E_{4} e^{i \omega_{4} t}+c . c.\right)$
total NL polariz.

$$
\begin{gathered}
\mathcal{P}_{N L}(t)=\frac{1}{8} \epsilon_{0} \chi^{(3)}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}+E_{3} e^{i \omega_{3} t}+E_{4} e^{i \omega_{4} t}+c . c .\right)^{3} \\
8^{3}=512 \text { terms }
\end{gathered}
$$




Now let us pick only components with $\pm \omega_{3}$ and $\pm \omega_{4}$ - due to interaction of all 4 waves

$$
\begin{aligned}
& \left.\mathcal{P}_{N L}(t)\right|_{\omega_{3}}=\frac{1}{8} \epsilon_{0} \chi^{(3)}\left(6 E_{1} E_{2} E_{4}^{*} e^{i \omega_{3} t}+\text { c.c. }\right)=\frac{3}{4} \epsilon_{0} \chi^{(3)}\left(E_{1} E_{2} E_{4}^{*} e^{i \omega_{3} t}+\text { c.c. }\right) \\
& \left.\mathcal{P}_{N L}(t)\right|_{\omega_{4}}=\frac{1}{8} \epsilon_{0} \chi^{(3)}\left(6 E_{1} E_{2} E_{3}^{*} e^{i \omega_{3} t}+\text { c.c. }\right)=\frac{3}{4} \epsilon_{0} \chi^{(3)}\left(E_{1} E_{2} E_{3}^{*} e^{i \omega_{3} t}+\text { c.c. }\right)
\end{aligned}
$$

## Four-wave mixing (FWM), two pump waves

Fourier components for $P_{N L}$

$$
P\left(\omega_{3}\right)=\frac{3}{2} \epsilon_{0} \chi^{(3)}\left(E_{1} E_{2} E_{4}^{*}\right)
$$

$$
\begin{equation*}
\rightarrow \quad P\left(\omega_{4}\right)=\frac{3}{2} \epsilon_{0} \chi^{(3)}\left(E_{1} E_{2} E_{3}^{*}\right) \tag{19.11}
\end{equation*}
$$

Now plug them into SVEA eaquation: $\quad \frac{\partial E\left(\omega_{i}\right)}{\partial z}=-\frac{i \omega_{i}}{2 n c \epsilon_{0}} P_{N L}\left(\omega_{i}\right)$
to get:

$$
\left.\begin{array}{l}
\frac{d E\left(\omega_{3}\right)}{d z}=-\frac{i \omega_{3}}{2 n c \epsilon_{0}} \frac{3}{2} \epsilon_{0} \chi^{(3)}\left(E_{1} E_{2} E_{4}^{*}\right) e^{-\Delta k z}=-i \frac{3}{4} \frac{\omega_{3} \chi^{(3)}}{n c} E_{1} E_{2} E_{4}^{*} e^{-\Delta k z} \\
\frac{d E\left(\omega_{4}\right)}{d z}=-\frac{i \omega_{4}}{2 n c \epsilon_{0}} \frac{3}{2} \epsilon_{0} \chi^{(3)}\left(E_{1} E_{2} E_{3}^{*}\right) e^{-\Delta k z}=-i \frac{3}{4} \frac{\omega_{4} \chi^{(3)}}{n c} E_{1} E_{2} E_{3}^{*} e^{-\Delta k z}
\end{array}\right\}
$$


interaction of 4 photons
$\Delta k=k_{1}+k_{2}-k_{3}-k_{4}+.$. plus NL phase modulation terms

Assume no pump depletion $E_{1}, E_{2}$ - const and $\Delta k=0$ (an additional phase mismatch comes from NL phase modulation)

## Four-wave mixing (FWM), two pump waves

$$
\begin{align*}
& \frac{d E_{3}}{d z}=-i \frac{3}{4} \frac{\omega_{3} \chi^{(3)}}{n c} E_{1} E_{2} E_{4}^{*} \\
& \frac{E_{4}}{d z}=-i \frac{3}{4} \frac{\omega_{4} \chi^{(3)}}{n c} E_{1} E_{2} E_{3}^{*} \tag{19.13}
\end{align*}
$$

$$
E_{1}=E\left(\omega_{1}\right)
$$

Introduce a new field variables (as in Lecture 5): $\quad A_{i}=\sqrt{\frac{n_{i}}{\omega_{i}}} E_{i}$
Then it simplifies to:

$$
\begin{aligned}
& \frac{d}{d z} \left\lvert\, \begin{array}{ll}
\frac{d A_{3}}{d z}=-i g A_{1} A_{2} A_{4}^{*} \\
d A_{4} & \text { (19.10) }
\end{array} \quad\right. \text { where } \quad g=\frac{3 \chi^{(3)}}{4 c} \sqrt{\frac{\omega_{1} \omega_{2} \omega_{3} \omega_{4}}{n_{1} n_{2} n_{3} n_{4}}} \\
& \rightarrow \quad \frac{d^{2} A_{3}}{d z^{2}}-\Gamma^{2} A_{3}=0 \quad \text { and } \quad \frac{d^{2} A_{4}}{d z^{2}}-\Gamma^{2} A_{4}=0 \quad \text { where } \quad \Gamma=\left|A_{1}\right|\left|A_{2}\right| g
\end{aligned}
$$

## Four-wave mixing (FWM), two pump waves

Similarity to the 3-wave optical parametric amplification (Lecture 12)
The general solutions to this equation are:

$$
e^{ \pm \Gamma z} \quad \text { or the same as a combination of } \cosh (\Gamma z) \& \sinh (\Gamma z)
$$

$$
A_{3}=a_{3} \cosh (\Gamma z)+b_{3} \sinh (\Gamma z)
$$

Look for solutions in the form:

$$
A_{4}=a_{4} \cosh (\Gamma z)+b_{4} \sinh (\Gamma z)
$$

$$
\begin{array}{ll}
\text { Initial conditions: } & A_{3}=A_{30} \\
& A_{4}=0
\end{array}
$$



Generation of new frequency components via four-wave mixing.

Solution:

$$
\begin{align*}
A_{3} & =A_{30} \cosh (\Gamma z) \\
A_{4} & =-i A_{30}^{*} \sinh (\Gamma z) \tag{19.14}
\end{align*}
$$

The 4-photon OPA uses four-wave mixing to provide optical gain of the 'seed' at $\omega_{3}$. Simultneously, the wave at $\omega_{4}$ grows from zero. For each photon created at $\omega_{3}$ a photon at $\omega_{4}$ is created

The corresponding photon-flux densities are:

$$
\begin{align*}
& \Phi_{3}=\Phi_{30} \cosh ^{2}(\Gamma z) \\
& \Phi_{4}=\Phi_{30} \sinh ^{2}(\Gamma z) \tag{19.14}
\end{align*}
$$

In terms of intensities:

$$
\begin{align*}
I_{3} & =I_{30} \cosh ^{2}(\Gamma z)  \tag{19.16}\\
I_{4} & =\frac{\omega_{4}}{\omega_{3}} I_{30} \sinh ^{2}(\Gamma z)
\end{align*}
$$

## Four-wave mixing (FWM), one pump wave

(a degenerate four-wave mixing)

One strong wave $\boldsymbol{\omega}_{\mathbf{1}} \quad$ creates two new waves $\quad \omega_{3} \quad \omega_{4}$
in a 4-wave process $\quad \boldsymbol{\omega}_{\mathbf{1}}+\boldsymbol{\omega}_{\mathbf{1}}=\omega_{3}+\omega_{4}$
total field

$$
\mathcal{E}(t)=\frac{1}{2}\left(E_{1} e^{i \omega_{1} t}+E_{3} e^{i \omega_{3} t}+E_{4} e^{i \omega_{4} t}+c . c .\right)
$$

total NL polariz.

$$
\mathcal{P}_{N L}(t)=\frac{1}{8} \epsilon_{0} \chi^{(3)}\left(E_{1} e^{i \omega_{1} t}+E_{3} e^{i \omega_{3} t}+E_{4} e^{i \omega_{4} t}+c . c .\right)^{3}
$$

Now let us pick only components with $\pm \omega_{3}$ and $\pm \omega_{4}$ - due to interaction of all 3 waves

$$
\begin{aligned}
& \left.\mathcal{P}_{N L}(t)\right|_{\omega_{3}}=\frac{1}{8} \epsilon_{0} \chi^{(3)}\left(3 E_{1} E_{1} E_{4}^{*} e^{i \omega_{3} t}+\text { c.c. }\right)=\frac{3}{8} \epsilon_{0} \chi^{(3)}\left(E_{1}^{2} E_{4}^{*} e^{i \omega_{3} t}+\text { c.c. }\right) \\
& \left.\mathcal{P}_{N L}(t)\right|_{\omega_{4}}=\frac{1}{8} \epsilon_{0} \chi^{(3)}\left(3 E_{1} E_{1} E_{3}^{*} e^{i \omega_{4} t}+\text { c.c. }\right)=\frac{3}{8} \epsilon_{0} \chi^{(3)}\left(E_{1}^{2} E_{3}^{*} e^{i \omega_{4} t}+c . c .\right)
\end{aligned}
$$

## Four-wave mixing (FWM), one pump wave

Phase matched, no pump depletion:

$$
\begin{array}{rl|l}
\frac{d}{d z} & \begin{aligned}
\frac{d A_{3}}{d z} & =-i g A_{1} A_{2} A_{4}^{*} \\
& *
\end{aligned} & \frac{d A_{4}}{d z}  \tag{19.14}\\
& =-i g A_{1} A_{2} A_{3}^{*}
\end{array}
$$

where

$$
\rightarrow \quad \frac{d^{2} A_{3}}{d z^{2}}-\Gamma^{2} A_{3}=0 \quad \text { and } \quad \frac{d^{2} A_{4}}{d z^{2}}-\Gamma^{2} A_{4}=0 \quad \text { where } \quad \Gamma=\left|A_{1}\right|^{2} g
$$

The corresponding photon-flux densities are:

$$
\begin{align*}
& \Phi_{3}=\Phi_{30} \cosh ^{2}(\Gamma z) \\
& \Phi_{4}=\Phi_{30} \sinh ^{2}(\Gamma z) \tag{19.17}
\end{align*}
$$

$$
\begin{align*}
I_{3} & =I_{30} \cosh ^{2}(\Gamma z)  \tag{19.18}\\
I_{4} & =\frac{\omega_{4}}{\omega_{3}} I_{30} \sinh ^{2}(\Gamma z)
\end{align*}
$$


[^0]:    2-photon absorption (2PA) is a $\chi^{(3)}$ process: $\omega=\omega+\omega-\omega$
    3-photon absorption (3PA) is a $\chi^{(5)}$ process: $\omega=\omega+\omega-\omega+\omega-\omega$
    4-photon absorption (4PA) is a $\chi^{(7)}$ process: $\omega=\omega+\omega-\omega+\omega-\omega+\omega-\omega$

