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Stimulated Raman scattering, Stokes and Anti-Stokes waves. 

Lecture 23
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Stimulated Raman scattering (SRS)

A story how energy dissipation can 
lead to  field amplification.

Raman scattering – inelastic scattering of light caused by the vibrational properties of matter
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Stimulated Raman scattering (SRS) After R. A. “Bob” Fisher
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Stimulated Raman scattering (SRS)

Molecule: vibrates at freq. Ω

Ω

ω
ω

ω±Ω

sidebands  ±Ω  are created 

Forward action
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Stimulated Raman scattering (SRS)

Ω
ω

ω–Ω

Back action Total field squared time averaged:
[E1cos(ωt) +E2cos(ω–Ω)]2

time

This modulated intensity coherently excites the molecular oscillation at frequency
ωL − ωS = Ω.

Two waves
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Stimulated Raman scattering (SRS)

Two laser frequencies force molecule to vibrate at freq. Ω

ω

ω–Ω

Back action

Induced dipole moment of a molecule:
𝑝 = 𝜖!𝛼𝐸

Key assumption of the theory:

𝛼 = 𝛼! +
𝜕𝛼
𝜕𝑞 𝑞

Energy due the oscillating field E:

𝑊 =
1
2𝑝𝐸 =

1
2 𝜖!𝛼𝐸𝐸 =

1
2 𝜖!𝛼𝐸

"

The applied optical field  exerts a force

𝐹 =
𝑑𝑊
𝑑𝑞 =

1
2
𝑑(𝜖!𝛼𝐸")

𝑑𝑞 =
1
2 𝜖!

𝜕𝛼
𝜕𝑞 𝐸"

q - normal 
coordinte
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Stimulated Raman scattering (SRS)

Simple oscillator model for molecular motion.

ℰ(𝑡) = !
" (	𝐸#𝑒

$(&!'()!*) + 𝐸,𝑒$(&"'()"*) + 𝑐. 𝑐.)total field

The force term oscilalting at Ω is	related	to	𝐸":	 à 

𝐹 𝑧, 𝑡 =
1
2 𝜖!

𝜕𝛼
𝜕𝑞 ×2×

1
4 (	𝐸#𝐸$

∗𝑒&(()*+,) + 𝑐. 𝑐. ) =
1
4 𝜖!

𝜕𝛼
𝜕𝑞 (	𝐸#𝐸$∗𝑒&(()*+,) + 𝑐. 𝑐. )

𝑞̈ + 𝛾𝑞̇ + Ω-"𝑞 =
𝐹 𝑡
𝑚 =

1
𝑚
1
4 𝜖-

𝜕𝛼
𝜕𝑞 (	𝐸#𝐸,∗𝑒$(/'(0*) + 𝑐. 𝑐. )

look for q in the form  𝑞 = !
" [𝑞(Ω)𝑒$(/'(0*) + 𝑐. 𝑐. ]

we thus find that the amplitude of the molecular vibration is given by

𝑞(Ω) =
1
2𝑚 𝜖!

𝜕𝛼
𝜕𝑞

𝐸#𝐸$∗

Ω!" − Ω" + 𝑖𝜔𝛾

.
/ (	𝐸#𝑒

&(0!)*1!,) + 𝐸$𝑒&(0")*1",) + 𝑐. 𝑐.)2
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Stimulated Raman scattering (SRS)

the nonlinear part of the polarization oscillating at Ω is given by

NL polarization 𝑃 𝑧, 𝑡 = 𝑁𝑝 𝑧, 𝑡 = 𝑁𝜖!𝛼(𝑧, 𝑡)𝐸 𝑧, 𝑡 = 𝜖!𝑁(𝛼! +
23
24 𝑞)𝐸 𝑧, 𝑡  

𝑃 𝑧, 𝑡 𝑁𝐿 = 𝜖!𝑁
𝜕𝛼
𝜕𝑞

1
2 (𝑞(Ω)𝑒& ()*+, + 𝑐. 𝑐. )

1
2 (	𝐸#𝑒

&(0!)*1!,) + 𝐸$𝑒&(0")*1",) + 𝑐. 𝑐. )

The part of this expression that oscillates at frequency ωS  – the Stokes polarization is given by

𝑃𝑆 𝑧, 𝑡 =
1
4
𝜖!𝑁

𝜕𝛼
𝜕𝑞

𝑞(Ω)∗𝐸#𝑒&(0")*1",) + c. c.

𝑃 𝜔$ =
1
2 𝜖!𝑁

𝜕𝛼
𝜕𝑞 𝑞(Ω)∗𝐸# =

1
2 𝜖!𝑁

𝜕𝛼
𝜕𝑞

1
2𝑚 𝜖!

𝜕𝛼
𝜕𝑞

𝐸#𝐸#∗𝐸$
Ω!" − Ω" − 𝑖𝜔𝛾

=
𝜖!2𝑁
4𝑚

𝜕𝛼
𝜕𝑞

2 |𝐸#|2𝐸$
Ω!" − Ω" − 𝑖𝜔𝛾

Fourier component of NL polariz.

DC

𝑞(Ω)∗ is because we have to take the 
c.c. part of 𝑞(Ω)
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Stimulated Raman scattering (SRS)

Note that Δ𝑘=0  here – SRS is always phase matched, since

Δ𝑘 = 𝑘# − 𝑘# + 𝑘$ − 𝑘$ = 0

Thus Stokes wave can propagate in any direction, even counter-propagate!

Now plug Fourier component into SVEA equation: 𝜕𝐸(𝜔&)
𝜕𝑧 	= −

𝑖𝜔&
2𝑛𝑐𝜖!

 𝑃5#(𝜔&)

to get: 𝑑𝐸(𝜔,)
𝑑𝑧 	=−

𝑖𝜔,
2𝑛𝑐𝜖-

𝜖-2𝑁
4𝑚

𝜕𝛼
𝜕𝑞

2
|𝐸#|2𝐸(𝜔,)

Ω-" − Ω" − 𝑖𝜔𝛾
𝑒(1)*

Let us now set Ω = Ω!
𝑑𝐸(𝜔,)
𝑑𝑧 	=−

𝑖𝜔,
8𝑛𝑐𝜖-

𝜖-2𝑁
𝑚

𝜕𝛼
𝜕𝑞

2
|𝐸#|2𝐸(𝜔,)
−𝑖𝜔𝛾 =

1
8𝑛𝑐𝜖-

𝜖-2𝑁
𝑚𝛾

𝜕𝛼
𝜕𝑞

2|𝐸#|2𝐸(𝜔,) = 𝛼𝐸(𝜔,)

𝑑𝐸(𝜔,)
𝑑𝑧 = 𝛼𝐸(𝜔,)exponential growth

At exact resonance, purely real 

𝛼 =
1

8𝑛𝑐𝜖#
𝜖#2𝑁
𝑚𝛾

𝜕𝛼
𝜕𝑞

$
|𝐸%|2 =

1
4
𝜖#2𝑁
𝑚𝛾

𝜕𝛼
𝜕𝑞

$
𝐼%

(23.1)

(23.2)
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Stimulated Raman scattering (SRS)

2𝛾12

𝜔# − 𝜔$ detuning from resonance

Lorentz 
function

|	𝐼𝑚{𝜒(2)}	|

How wide is the SRS gain bandwidth ? 
- from GHz to many THz

Raman frequency shift:    15.6 THz in silicon
                               120 THz in H2 gas
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Stimulated Raman scattering (SRS)

Quantum description
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Nonlinear susceptibility χ(3), quantum mechanical model 

According to Boyd, Stegeman

𝜒(7) - is a huge sum of many different terms

- here frequenices 𝜔8 𝜔4 𝜔9 can be both positive and negative and can each take values of ±𝜔. ±𝜔" ±𝜔7 ±𝜔/  
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Stimulated Raman scattering (SRS)

Let us assume we have only two frequencies (‘Laser’ and ‘Stokes’)  
𝜔# and 𝜔$ (𝜔$ < 	𝜔#) and take the terms that are close to the Raman 
resonance, that is 𝜔". is close to 𝜔# − 𝜔$ 

2

1

𝜒(") ≈ $
%:ℏ;

𝜇'(𝜇')𝜇)"𝜇"(

× %
*,,,-

[
1

[𝜔)'−(𝜔. − 𝜔/)](𝜔('−𝜔* − 𝜔, − 𝜔-)(𝜔"'−𝜔*)
+. . ]

resonant term - what is in brackets is close to zero

à T
8,4,9

[

𝑁
𝜖!ℏ7

𝜇./𝜇."𝜇"7𝜇7/

[𝜔".− 𝜔# − 𝜔$ + 𝑖𝛾".](𝜔/.−𝜔8 − 𝜔4 − 𝜔9)(𝜔7.−𝜔8)
+. . ]

damping term added

𝜔% 	 𝜔&

𝜔&	 𝜔%
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Stimulated Raman scattering (SRS)
𝝎𝑺	 𝝎𝑳	

We have two waves 𝝎𝑳	 𝝎𝑺 (𝜔#> 𝜔$) 

Regard a 4-wave process 𝜔$	 = 	𝜔# 	− 𝜔#+	𝜔$	

ℰ(𝑡) = !
"
(	𝐸#𝑒$&!' + 𝐸,𝑒$&"' + 𝑐. 𝑐.)

𝒫3#(𝑡) =
!
4
𝜖-𝜒 2 (	𝐸#𝑒$&!' + 𝐸,𝑒$&"' + 𝑐. 𝑐.)3

total field

total NL 
polariz.

Now let us pick only components with ±𝜔$   - due to interaction of three waves 

𝒫3# 𝑡 |𝜔" =
!
4 𝜖-𝜒

2 (	6𝐸#𝐸#∗𝐸,𝑒$&"' + 𝑐. 𝑐.)=
2
5 𝜖-𝜒

2 (	𝐸#𝐸#∗𝐸,𝑒$&"' + 𝑐. 𝑐. )

Frequency

𝐸#≫ 𝐸$
pumpStokes

Fourier component    𝑃 𝜔$ = 7
"
𝜖!𝜒 7 𝐸#𝐸#∗𝐸$ 
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Stimulated Raman scattering (SRS)

If we set: 𝜒 7 = 𝜒@
(7) + 𝑖𝜒A

(7) - real and imaginary parts

𝑑𝐸(𝜔,)
𝑑𝑧 	=−

𝑖𝜔,
2𝑛𝑐𝜖-

3
2 𝜖-𝜒

2 	𝐸#𝐸#∗𝐸,𝑒(1)* = −𝑖
3
4
𝜔,𝜒 2

𝑛𝑐 	𝐸#𝐸#∗𝐸,𝑒(1)*

Real part - responsible for cross-phase modulation
Imaginary part - responsible for Raman gain

Now plug into SVEA eqauation:
𝜕𝐸(𝜔$)
𝜕𝑧 	= −

𝑖𝜔$
2𝑛𝑐𝜖!

 𝑃5#(𝜔&)

𝑑𝐸(𝜔,)
𝑑𝑧 	=

3
4
𝜔,𝜒6

(2)

𝑛𝑐 	|𝐸# |2𝐸 𝜔, =
3
4
𝜔,𝜒6

2

𝑛𝑐
2𝐼#
𝜖-𝑛𝑐

𝐸 𝜔, =
3
2
𝜔,𝜒6

2

𝜖-𝑛2𝑐2
𝐼#𝐸 𝜔,

Δ𝑘 = 0

For intensity 𝑑𝐼$
𝑑𝑧 = 𝑔@𝐼#𝐼$ 𝐼/ = 𝐼/0𝑒1B2C.

𝑔' = 3
𝜔&𝜒(

)

𝜖#𝑛2𝑐2 measured in m/W
Raman gain coeff.

(23.3)
𝐼/
𝐼/0

− 1
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Stimulated Raman scattering (SRS) After R. A. “Bob” Fisher
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Stimulated Raman emission in a glass fiber

Fiber : fused quartz (3.8 µm core diam.)
Pump: Xenon laser at λ=526 nm 
Signal: at λ=535.3 nm (Raman frequency shift 330 cm-1 or 10 THz)
Measured Raman gain coeff.  g= 1.5 x 10-11 cm/W

Example: for the pump power of 100W
(Ip= 0.75 GW/cm2) and L=590 cm 

we get :    Gain = exp(gIpL) = exp(6.6) =740 

pump intensity
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Stimulated Raman scattering (SRS)



19

Stimulated Raman scattering (SRS)

Solid-state Raman materials
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Stimulated Raman scattering (SRS)

Raman gain spectrum of a silica fiber. 

Maximum Raman gain is for the frequency offset of 13.2 THz. 

A pump wave at 1064 nm leads to the largest Raman gain at a Stokes wavelength of 1116 nm. 

Silica glass 

Continuum of 
vibration modes 
of the silica 
structure.
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Stimulated Raman scattering (SRS)

Hydrogen gas, H2

1.064 µm laser pump

1st Stokes 1.91 µm
2nd Stokes 9.2 µm

Raman shift =4155 cm−1

10 ns

Raman cell
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A continuous-wave Raman silicon laser

Silicon 
waveguide 

Pump wavelength 1550 nm. 
Raman/Stokes wavelength 1686 nm

The effective core area (1.6 µm)2
WG length: 4.8 cm

When a reverse bias voltage (~25V) is applied, the TPA-generated electron–hole 
pairs can be swept out of the silicon waveguide by the electric field between the p- 
and n-doped regions.

Raman gain was measured in a pump–probe experiment: a single-pass gain of 3 dB 
(~2x) at a pump power of 700 mW coupled into the waveguide.

2005
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A continuous-wave Raman silicon laser (continued)

The Raman laser frequency shift is 15.6 THz (520 cm-1)
The lasing threshold was 180mW with a 25-V bias.
Conversion efficiency 2%

monolithic integration of silicon-based optoelectronics
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Stimulated Raman scattering (SRS)

Cascaded Raman laser (converter) based on a  tellurite fiber and Tm 
pump laser. 

Cascaded Raman lasing
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Stimulated Raman scattering (SRS)

The Raman-active medium can be an optical fiber, a bulk crystal (e.g. silicon or diamond), 
a waveguide in a photonic integrated circuit, or a cell with a gas or liquid.

• Stokes wave can propagate in any direction, even counter-propagate

• In the telecom systems, fiber Raman amplifiers compete with erbium-
doped fiber amplifiers. Raman amplifiers can have co-propagating or 
counter-propagating pump wave (from continuous-wave  diode laser).

• Raman amplifiers can be operated in different wavelength regions, 
provided that a suitable pump source is used. 

• The gain spectrum can be tailored by using different pump wavelengths 
simultaneously.

• As opposed to SBS, pulsed (ns or ps) radiation can be used to reach SRS 
threshold

• Raman lasers can be used as frequency down-converters
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Raman frequency self-shift
Soliton self-frequency shift. Due to Raman gain, the blue portion of the soliton spectrum 
pumps the red portion of the spectrum, causing a continuous redshift in the soliton 
spectrum. 
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Coherent Anti-Stokes Raman Scattering (CARS) 
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Coherent Anti-Stokes Raman Scattering (CARS)

𝜔% 	 𝜔&

𝜔% 	 𝜔*&

CARS needs a strong 
Stokes wave 𝜔D$	 = 	𝜔# 	− 𝜔$+	𝜔#=	2𝜔# 	− 𝜔$	

𝑘D$	 =	2𝑘# 	− 𝑘$	Phase matching is critical

Can be regarded as a resonant 4-wave mixing process 

Collinear phase 
matching is 
impossible for normal 
dispersion, but vector 
phase matching - is 
possible; hence the 
outputs are in the form 
of a cone.

(23.4)

(23.5)

4-wave process

normal 
dispersion
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CARS microscopy

CARS microscope


