Lecture 4

Brief review of quantum mechanics. Quantum-mechanical
perturbation theory for the nonlinear optical susceptibility.
1st, 2nd and 39 order susceptibilities. Susceptibility

resonances.



QUANTUM MECHANICS FOR PEDESTRIANS

The most general form is the time-dependent Schrodinger equation

lhl/) p— Hl/) ' h = i the reduced Planck’s constant

2T _5.626 % 10°3/21 = 1.0546 X 10 J-s

quantum system). Contains all information

lh _— ﬁ‘(/) (4.1 ) about the system

erm ocftro‘c{chr N dt
*12.VIIL. 188T + 4.].15¢ g

d l/) - wave function (is the state vector of the

H - Hamiltonian operator (~ total energy)

To apply the Schrodinger equation, write down the Hamiltonian H for the system, accounting for the kinetic and
potential energies of the particles constituting the system, then insert it into the Schrodinger equation. The
resulting partial differential equation is solved for the wave function .

For example, the probability of finding a particle at the position ris ~ [@(r)|2 =w(r)w(r)*

ftptp*dgr =1



Quantum mechanics for pedestrians

In the coordinate representation, quantum mechanical operators are represented by :
ordinary numbers for positions

X ->X
differential operators for momenta

A

. d
p ->—ih— / /
hZ 21/}

Assume Hamiltonian H that is independent on time: H=—-————=+U®X)

Here, the form of the Hamiltonian operator comes from classical mechanics, where the Hamiltonian function is the sum of the kinetic and potential
energies (Similar to p?/2m+U(x) expression in mechanics)

If U does not depend on time, the Schrodinger equation allows stationary solutions
Assume the solution in the form ¥ = v(t)u(x)

d l/) d u, — spatially varying part of the wavefunction
. P _ ~ = En/h
Then from (41) ih— = HY — u(x)lh—v(t) = v(t)[-]u(x) @ /
a G
It is reasonable to separate the variables and write ih% v(t) = Ev(t) where E is some constant

then Eu(x) = f—iu(x)



Quantum mechanics for pedestrians

Hu(x) = Eu(x) equation for an eigenfunction

This is where quantization comes from !

iy _ Discrete solutions for the spatially varying part
Hup = Equn (4'2) E,, has the meaning of energy

Stationary solutions for y :
u, — spatially varying
_ —iEqt/h — —iwnt part of the wavefunction
P, (t,x) = u,(x)e Ent/t =y (x)e~t@nt  (4.3) e-iont _ phase term:
w,=E,/h



The particle-in-a-box problem: semiconductor quantum well

Semiconductor quantum well — a thin (few nm) layer of material with a
bandgap E, is sandwitched between two layers with higher bandgap.

probability: |(z)|2
lp (Z ) § nm AlAs/GaAs quantum well

AlAs Gaks Aky

Quantum Well o /VV\
PR 404 P>

K=
[
D

=

: : n=3 Es

\/ 10 -
A particle that can move A— N —
in only one dimension (z): 035717 ||

distance (nm)

GaAs
substrate

Quantum well:
U=0 between0<z<lL,

and Quantum Cascade Laser
U =« outside {0 <z <L}
' n= /\ E2
Conduction band \\_/
E:h\.! E;muu
Valence band 1 n=1 E1
U(z)=0

z=0 z=L - —




The particle-in-a-box problem

A particle that can move in only one
dimension. Quantum well:
U=0 between0O<z<L, and

U = outside {0 <z <L}

o 2 42y N VAN
The Hamiltonian A : H=__ "% n=3 Es
H T g2 + U(2) \/
Solve (4.2): | Hu, = Equ h? d*p h? d*y
LI T a0 T Y s T B =0
and y=0
dZ
Rewrite this: — TP =0, «?= (f_él) N VN £,
o N
Solution: Y = const - Sin(KZ), boundary condition : kL =, n=1,2,3..
n=1 E1
hZ
> K*=Ep | (C)=(mn/L)?,  ->| Ep= (—)2 2 n=123.. (4.4)
z=0 z=L
W, = u, = Cnsin(n;—nz) g—iwnt: Energy is quantized

and scales as n?



The particle-in-a-box problem

- u, = C,sin(*2z) e
n n n L

U = Clsin(%z)
.2
Uy = Clen(Tn-Z)

.3
Uz = C3 sm(Tnz)

u, = C, sin(nL—”z)

C, is such that jlli*l/de =1

Note that fOL UnU,dz = 1 for m =n,

=0form=+n

—lwnt.
b

C, =

E,F% (D?n?, n=123..
2
A (4.5)

normalizing factor

(4.6)

Eigenfunctions are orthogonal!

Thus they constitute a complete
set of orthogonal basis functions

n=3

n=2

n=1

z=0 z=L



The particle-in-a-box problem

If we have an operator 0, the expectation value of the associated physical quantity is

Jy*(0y)a®r - <y| O] y>

For the E, (ground) state: Y, = \Esin(lzz) e—iw1t;

what is the average position in space of the electron

2 T
<x>= jlpfzwldz = f —sin®(=z)zdz = ......= L/2
o L L

what is the average momentum of the electron

. d 2w om T
<p>= le*(—lhEl/J)dZ = — fz(z)sm(zz) cos(zz)dz =0

——

what is the average energy of the electron

E‘j* hzdzlpd_thznz_zﬂd_hznz
<E>= V(oD = ) o (P (g adz =50 ()

L,Y—/

compare to (4.4)

n=3

n=2

n=1

z=0

z=L



Susceptibilities — derived via perturbation solution to Schrodinger’s equation

In QM: we have a particle with a Hamiltonian H, and an external EM field, which we regard as a perturbation:

H=H,+ V()
ja perturbation

Now introduce 1 (0 < A < 1) a ‘tuning’ parameter (strength of the interaction): 4 = 0 field is off; A =1 field is on
H=H,+ V()
Seek a solution to Schrodinger’s equation in the form of a power series in A

V() = YO0, o) + WO, t) + 2@ (r,t) +

., d =
Plug this ¥ (r, t) into iA _1IJ = Hl/) equation and require that the terms proportional to AN satisfy the equality separately (N=0,1,2,....):

W ﬂ’( L 221y = By O+Hdp O+ H 2@ + A0 ©+ 209 @s BPy@+.
— /’ﬁ” Z — —_ — —_ —
. 61/)(0) — simply Schradinger’s equation for the

_ — (0) : equ orine
(0 -order apprOX|m.) ih ot Hol/) (4_73) tahtgrggr;”tgg ﬁglzence of its interaction with

(€ ~
(1-st -order) ih aw = Hyp® + 7y (4.7b)

(2-nd -order) in 2V aw( = Hyp@ + 7@ (4.7¢) Once Y~V is known one
----- can find y®)

(N) — ~
(N-th -order) in allgt — ng(N) n V¢(N—1) (4.7d)



Susceptibilities — derived via perturbation solution to Schrodinger’s equation
Solution strategy

Start form ¥(© - the the solution of (4.1) corresponding to Hy; the system is in the ground state

Use (4.7) to calculate
YD from known @ ( YD ~F | linear in the applied field amplitude )

Y@ from known Y@ ( Y@ ~E2  quadratic in the applied field )
P B from known Y@ ( YB®~E3 cubic in the applied field )

We need to find polarization = dipole moment per unit volume as in the expression from L2:
D=¢cE+P

According to the rules of quantum mechanics, the expectation value of the electric dipole moment
p (per one electron) is given by < p >=<y| | > (4.8)

where i = —er is the electric dipole moment operator and —e is the charge of the electron.
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QM perturbation solution

Initially, atom is in the state 1 (ground state) so that the solution to the 0-order equation is:
PO (r,t) = u (e Ert/h =y (r)e i1t with w,=E, /h

Now, expand ™) (N=1,2,3...) as a sum of energy eigenfunctions of an unperturbed system:

YN (r,t) = Z N)(t) u; (r)eK“‘)lt (4.9) with w;=E;/h

\

u, (r) - constitute a complete set of orthogonal basis functions in the sense [uj,u,d*r =1if m=n, and=0if m #n

Now plug (4.9) into (4.7d) : ih Zl(a(m /(l(/v/)) u; e toit= Zlm&@/ “tort 4y Va(N 1 we~tert
in?™ _ 0 (4.7d) =

= = Hy™ + 7y (-1 (N) -
Equ; = hwja; ™ uy

lﬁzla( )u e Lwlt—z Va(N 1)u p—lwit

multiply each side from the left by uy, and integrate over all space (take into account orthogonality for m # 1)

i - (N)  —iwmt _ (N-1) ,~iwgt 3 (N=-1) ,—iawyt
ihaMe~iomt = 3 gf [ up Vud3r = 3, Viua; l

11



QM perturbation solution

from the previous slide

We have introduced the matrix elements of the
perturbing Hamiltonian

o (N) —i N-1) —i
Lha,(n)e iwmt— Zlelal( ) p-iwit

%

— * ) 3
V,,,[:(le M[>=/Lthu/d r.

a () =(ih) 1 3 alN PV etemit

where wy,; = wy, — wy

(4.10)

12



Matrix elements of the perturbing Hamiltonian V,,;; and u,,;;

In QM, the interaction Hamiltonian of the atom with the electromagnetic field is the form:
V(t)=—p-E()

where i = —e7* , is the electric dipole moment operator and —e is the charge of the electron.
Thus Vit = —lm E(t) (4.11)

where the matrix element [L,; is the electric dipole (dipole transition moment).
i = [ WnBndr = [ () idr (4.122)

tim = Pt
if we neglect the phase factor e!®mtt in (4.12a), it becomes

Uy = Juﬁnﬁuld3r = fu;‘in(—er) w,d3r (4.12b)

in one dimensional case: tmr = (—e) f Umzudz (4.12c)

13



Matrix elements of the perturbing Hamiltonian V,,;; and u,,;;
Example: one dimensional case (particle-in-a-box)

from the previous slide Ui = (—8) f u;"nzuldz (4.12c)
n=3
Let us calculate the electric dipole transition moment between u; and u, energy eigenfunctions
2 . .
U, = \/%sm(zz)
2 . 27
U, = \/;SIH(TZ)
n=2
. 2 (Y m . 2m
Ui, = (—e) | ujzu,dz =(—e)— | zsin(=2z)sin(—z)dz =
LJ, L L
n=1

16
= eWL = 0.18elL

z=0 =L

14



Linear susceptibility y(*) — perturbation
solution



1st -order perturbation solution, N=1

Calculate 15t -order correction — for induced linear polarization P (1)

ag (8) =) Ty a"  VVyeiomt (4.10)
where w,,; = w,, — @y Flnd 7,0(1)
: : L (N-1) _ (0) _ (0) _ : :
By integrating (4.10) and taking into account that  q =a, =a, =1 (onlyground state is occupied), we get
ap (©) =)L (1) Vige'mt’ dt’ = [T (W)™ [~umi E()]eiomt" e’ E() = LEemiot 4 Lpetiot

t
1 i ! P ! . / . ]
= (lh)_l (_:uml){j E{Ee—lwt elwmlt _|_Ee+la)t e“"mlt }dt’

14 t PRV t r, 1 mE _ wmiE
=—gﬂm1E{ f_oo pl@mi—w)t’ gpr 4 f_oo pll@mitw)t’ 14 } = ﬁ{mel(wml w)t +mel(wm1+w)t} (4.13)
Finally, WO = ) al @) ey (et
m
1 Um1E (W1~ Um1E ' _i
— et(@m1 a))t+ el(wm1+w)t u (r)e lwmt
120 (oma—) (@1 +@) ) tm

- L HmiE  —jwt—iwt  HFmiE o t+iet 4.14



1st -order perturbation solution

The 1-st order-corrected time-dependent wave function is: Y(r,t) = O, ) + pD(r,t)
Polarization induced per atom is: (p() = (Y © + @D || Y© + D) see (4.8)
=(¢(0) |ﬁ| ¢(1)> + (1/1(1) |ﬁ| w(o)) only this combination gives polarization proportional to E
. e—iwt ei(ut e m e—iwt eiwt N mim e—iwt e+ia)t
(WO 18l pO)= (wyeort @] 13, M [y Ty eten) =Ly S PO B ) = 1Y, i [ 22 PO T
similarly,
1) 1o 0) _ l LUm1 Ee—iwt Eeiwt oAt e —iwat _ l fimimi Ee+iwt Ee—iwt
(O (] @)= (15, 1 [ L Oy emiont [l uyeiont | = Ly, Mamima R e T
1)\ _— |1m|? 1 1 —iwt This is an electric dipole moment of a single
Thus (p( )) o Zm 2h [(wm1—w) (Wm1+w) Ee™™" +c.c. atom induced by the field E at frequency w
The linear polarization (dipole moment per unit volume) is: P = NpD (N is the density of atoms)
and since P = ¢,y (WE, and E = %Ee‘i‘“t + c.c.,we get :
N |#1m|2 |.ulm|2
And finally: X =—>{ + b (4.19) this is the linear (15t -order) susceptibility
y

EOh poy (wml_w) ((‘)ml +(‘))

17



1st -order perturbation solution

Let us simplify (4.11) - take a system with just 3 levels ("1” is the ground state) and

leave only resonant terms

2
X(l)_ N 2:{ |tam| |t1m] )
€oh (Wm1—w) (%—w}
m

N |.U12|2 |M13|2
{ +
€oh (wy—w)  (w31—w)

This formula makes sense:
susceptibility y, and refractive index

n=,14+y

- grow with frequency between the two poles

w31

W21

18



1st -order QM perturbation solution: compare to classical model

2 2
1) — N |t1ml n |t1m] ) 416
X 7 (4.16)
€0l & (Wm1—w) (W tw)
assume that the dominant (1) _ N |Ii13;|2 (4.16a)

is only one transition 1-3 — €oh (w31—w)

Ng?/m
— w? + iwy)

compare to classical
osillator model

¥ @ = > see (3.3d) fromL3

€o(w§

wi — w* + iwy = (W + w)(Wy — w)+iwy = 2wy(wy — W) + Wy = 2we(wy — ® + %/)

Ne?
0~

2meqwo(wg — w + %)

he?
2mw

2
|13 <->

19



2nd -order nonlinearity y(?)— perturbation
solution



2nd -order nonlinearity

Now, calculate the 2" -order correction — nonlinear polarization P 2

. . . 1 —i 1 i
Optical input field E(t) = =Ee '@t 4 —Fetit o . .
2 2 ( YW ~E, linear in the applied field amplitude )
( Yy@~E? | quadratic in the applied field )
( Y@ ~E3, cubic in the applied field )

The 2nd-order contribution to the induced dipole moment per atom is :

v

<p® > =< p© L@ 4 y®@ [ p© 4@ 4@ >

— > <f)(2)> = <Iﬂ(0) }ﬁ, | w(2)> —I— <‘¢'(l) }ﬁ, } ‘lp' (1 )> —I— <¢(2) }ﬁ, } ¢(0)>, since only this combination gives polarization proportional to E2

we have from previous:
l/}(o) (7‘, t) — ul(T‘)e_iElt/h — ule—iwlt,
YO, 1) = 5 T { s oty Emiis gloty (1)

Wm1—W) (wm1tw)

YO, t) =7

Need to find @ via known ¢



2nd -order nonlinearity

From (4.9-4.10) 4@y, 1) = z a@(t) u, (r)e~int
n

a2 (O = ()7 ) apeiommt =

m

a(l) _ 1 { :umlE ei(wml
™ 2h

2h (wml_(‘))

—wye 4 _HmiE ei(wm1+a))t}

(C‘)m1+w)

1 o
Vam = (—Hm)E(®) =5 ) (=ftnm) Ee om0t
q

= (lh)—l z 1 HmlE ei(wml—wp)t Z(_llnm)Eei(w”m_wq)t —
q

m4h - (Wm1—wy)

; 2
I E- .
UnmHUm1 pi(tn1—wp—we)t

 4h? o (Wm1—ws)

1 Um1E

- el(@mi—wp)t
2h > (wml_(‘)p)

ws runs through + wor —w

2 .
UnmMUmi1E pl(@n1—wp—wg)t (4.17)

2 t .2 / / '
a7(1 )(t) =f_oo a7(1 )(t )dt — ﬁzm,p,q (On1

—Wp—wq)(Wm1—Ws)

22



Finally,

<p®>=_.

< S E (@)

(‘U1

.

( <y e_lwltl.ul Y Zmnqp (

J its complex conjugate

2nd -order nonlinearity

<l~)(2)> — <¢(0)}ﬂ}¢(2)> 4 (w(l) ll’l}w(l)> + (w(

nmimiE(wp)E(wq)
Wn1—Wp—wq)(Wm1—wp)

Upe —l(w1twptwg)t > =

umelw““thI 77 2mp E (0p)

a)) (wlw)

iy ).

Hanbnmbmi E(wp)E(wq) e —i(wptwg)t
(wn1 —wp—wq)(wm1—wp)

M1nﬂnmﬂm1E(wp)E(“)q) i(wptwg)t

1
a2 Zm,n,q,p

—i(w1twp)ts—=
Ume pr>= 4h22mnqp

e

(Wn1—Wp—wgq)(Wm1—wp)

#1nﬂnmﬂm1E(wp)E(wq) e “H(wp—wq)t
(wWn1—wg)(Wm1—wWp)

MlnﬂnmﬂmlE(wp)E(wq) —z(wp+wq)t_|_

1
< p(z) > = WZm,n,q,p{

(Wn1—Wp—wg)(Wm1—Wp) (Wn1—Wp—wgq)(Wm1—Wp)

Ii1nllnmlim1E(wp)E(wq) ei(wp+wq)t + M1n#nm#m15(wp)E(wq) —L(a)p wq)t

(Wn1=wq)(Wm1—wp)

(4.18)
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2nd -order nonlinearity — perturbation solution

3

Finally, the 2nd-order contribution to the induced dipole moment per unit volume: @q .

31
2 P@2w) | 2
2) — 2
| U T .
The nonllnear SUCCGptlblllty IS . N - number density of electrons 1@ definition (will discuss it later in the couse) 1
2) - N HinBnmHUm1 HinBnmHUm1 HinBnmHUm1
X( ) = o2 Zm,n,q,p { } (4.19)

(Wn1—wWp—wWg)(Wm1—wWp) (WMm1tWptwg)(Wn1twg) (Wp1twg)(Wm1—wyp)

Two fields: w, and w, run through *w,; *w,

One field: w, and w, run through o

Even for a 3-level system, there are 2x2x4x4=64 elements in this sum !

N HU13U32M121 HU13U32MU21 HU13U32U21
= + +
€oh (wsl_wp - a)q)(a)21 - wp) (w31—wp - a)q)(a)21 - wq) (w31_wq)(w21 - (Up)
HU12U23HU31 U12HM23H31 U12HM23H31
+ +
(‘U21_‘Up - (Uq)(w31 - wp) (w21_wp - wq)(w31 - wq) (w21—a)q)(a)31 - ‘Up)
HUi3HU32M21 H13HU32M21 H13HU32M21 (4 20)
(“)31+wp - wq)(a)21 - wp) (w31_“)p - a)q)(a)21 + wq) (w31_wq)(w21 + (Up) .
Hi3H32H21 H13HU32H21 H13HU32H21
_l_
(w31+wp + wq)(w21 - (Up) (‘U31+wp + wq)(w21 - wq) (w31+wq)(w21 + (Up)

24



2nd -order perturbation solution

Let us now select only resonant terms in (4.13a)

Two fields: w, and w, run through *w,; *w,

X(Z) > _N H13U32H21 H13U32H21 + o}
€N ~ (W31—Wp—wgq) (W21~ Wp) (W31=Wp—Wgq) (W21 —Wgq) S

I 3

Wq

. @32 wy + wq
31

! Y 2

double resonance: at w31 and w4 w321 Wy
1

" |

Strictly speaking, transition frequencies w,; , w31 need to be complex quantities w = w+iy,
to incorporate damping phenomena into the theory. This allows to avoid infinities at exact resonances.

25



3nd -order nonlinearity — perturbation solution

The QM microscopic
expression for 3 order
nonlinear succeptibility y (3
looks similar, but even more
scary (3 denominators).

from Boyd’s book

k 0 i o h
/’Lgvlj“vnunmumg

N
-y

mnyv (Wyg — p — wqg — wp)(Wng — wqg — wp)(WOmg — @p)

J ook i h
'ugvlu“vnlunmlumg
(wﬁg + wr)(wng — Wg — wp)(wmg — wp)

Jooi ok h
/Lgvl’Lpn/an/ng

+
(w;';g + wr)(w;';g + wr + wq)(wmg — C‘)p)

J i h k
n Hgvyp /vtn.m/img

(a);l):g + a)l')(a);!;g + a)l' + w(])(w;l;;g + a)l’ + a)q + w[))

]. (3.2.32)
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Model system for optical y(* nonlinearities: semiconductor quantum well

infinite-barrier quantum well (QW)

Symmetric semiconductor quantum well
z=0

From previous page:

f1zUz3 fizUz3
1223131 12M23HM31 + }

2) __>

x R St o mrmwrs o R ANEEVAN

0 W31~ Wp—Wq)(W21—Wyp) (31— Wp—wWg)(W21—wgq) : E
\/ 3

wp, Wy, - two pump fregencies

Note that in a symmetric quantum well
11270, 370, but(uz; =0.

us1=—e Juzzuydz  =0; |

Hence pi13u3;1421=0 E.

This is quite clear, because there should be
some asymmetry to achieve y(% .5

«— L ——

~5-10 nm
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2nd -order nonlinearity — perturbation solution

. 3

4

o | Y,

| — 1

-0.5 (0] 0.5

4

3

E (Y1 + P,)?
;

(30.5 70 0.5

4 R

3

> (P2 + P3)?
:

(—)O.S ' 0 B 0.5

4

3

2 (Y1 +3)?
;

0

-0.5 (0] 0.5




Model system for optical nonlinearities: semiconductor quantum well

Model system for optical nonlinearities: Asymmetric quantum wells

E. Rosencher and Ph. Bois
Laboratoire Central de Recherches, Thomson—CSF, F-91404 Orsay CEDEX, France
(Received 23 May 1991)

Optical nonlinearities in asymmetric quantum wells due to resonant intersubband transitions are ana-
lyzed using a compact density-matrix approach. The large dipolar matrix elements obtained in such
structures are partly due to the small effective masses of the host materials and are interpreted in terms
of the participation of the whole band structure to the optical transitions. The other origin of the large
second-order susceptibilities lies in the possibility of tuning independently the potential shape and the
width of asymmetric quantum wells in order to obtain resonances (single or double) for a given excita-
tion wavelength. Using a model based on an infinite-barrier quantum well, we have obtained very gen-
eral and tractable formulas for second-order susceptibilities at resonance. This model allows us to fix ad-
ditional fundamental quantum limitations to second-order optical nonlinearities. The “best potential
shapes” maximizing the different susceptibilities are obtained, together with scaling laws as a function of
photon energy. Experimental results on different GaAs/Al,Ga,_, As asymmetric quantum wells opti-
mized for second-harmonic generation and optical rectifications are given, with optical rectification
coefficients more than 10° higher than in bulk GaAs. These asymmetric quantum wells may be con-
sidered as giant “pseudomolecules” optimized for large optical nonlinearities in the 8—12-um range.
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FIG. 4. Variation-of-the product of the normalized dipolar
matrix elements” | ,10313,| /Ed? as a function of deep QW
thickness d. The_double-resonance conditions E, —E,=E,
—E,=hv are imposed in the calculation. The optimum value
d/d,=0.925 defines the “best potential shape” for second-
harmonic generation in step AQW’s.

Asymmetric quantum well : now all u,,#0, u;3#0, and uz; #0.

Morover, SHG (w + w = 2w) with double resonance : w~E1;, 2w~E3
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