Lecture 4

Brief review of quantum mechanics. Quantum-mechanical perturbation theory for the nonlinear optical susceptibility. $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ order susceptibilities. Susceptibility resonances.

QUANTUM MECHANICS FOR PEDESTRIANS

The most general form is the time-dependent Schrödinger equation

$$
\rightarrow i \hbar \dot{\psi}=\widehat{H} \psi \quad, \hbar=\frac{h}{2 \pi} \quad \begin{aligned}
& \text { the reduced Planck's constant } \\
& =6.626 \times 10^{-34} / 2 \pi=1.0546 \times 10^{-34} \mathrm{Js}
\end{aligned}
$$

or

$$
i \hbar \frac{d \psi}{d t}=\widehat{H} \psi
$$

To apply the Schrödinger equation, write down the Hamiltonian \widehat{H} for the system, accounting for the kinetic and potential energies of the particles constituting the system, then insert it into the Schrödinger equation. The resulting partial differential equation is solved for the wave function ψ.

For example, the probability of finding a particle at the position r is $\sim|\psi(r)|^{2}=\psi(r) \psi(r)^{*}$

$$
\int \Psi \Psi * d^{3} r=1
$$

- i.e. a particle should be somewhere

Quantum mechanics for pedestrians

In the coordinate representation, quantum mechanical operators are represented by : ordinary numbers for positions \hat{x}-> x
differential operators for momenta

$$
\hat{p}->-i \hbar \frac{d}{d x}
$$

Assume Hamiltonian \widehat{H} that is independent on time:

$$
\widehat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+U(x)
$$

Here, the form of the Hamiltonian operator comes from classical mechanics, where the Hamiltonian function is the sum of the kinetic and potential energies (Similar to $p^{2} / 2 m+U(x)$ expression in mechanics)

If U does not depend on time, the Schrödinger equation allows stationary solutions Assume the solution in the form $\psi=v(t) u(x)$

Then from (4.1) $i \hbar \frac{d \psi}{d t}=\widehat{H} \psi \longrightarrow u(x) i \hbar \underbrace{\frac{d}{d t} v(t)}=\underbrace{v(t) \widehat{H} u(x)}$
u_{n} - spatially varying part of the wavefunction

$$
u(x) i \hbar \underbrace{\frac{d}{d t} v(t)}=\underbrace{v(t)} \widehat{H} u(x)
$$

u_{n} - spatially varying part of

$$
\omega_{n}=E_{n} / \hbar
$$

It is reasonable to separate the variables and write

$$
i \hbar \frac{d}{d t} v(t)=E v(t)
$$

where E is some constant

$$
\text { then } \quad E u(x)=\widehat{H} u(x)
$$

Quantum mechanics for pedestrians

$$
\begin{aligned}
& v(t)=e^{-i E t / \hbar}=e^{-i \omega t} \\
& \widehat{H} u(x)=E u(x)
\end{aligned}
$$

$$
\omega=E / \hbar
$$

equation for an eigenfunction

This is where quantization comes from!

$$
\begin{equation*}
\widehat{H} u_{n}=E_{n} u_{n} \tag{4.2}
\end{equation*}
$$

Discrete solutions for the spatially varying part E_{n} has the meaning of energy

Stationary solutions for ψ :

$$
\begin{equation*}
\psi_{n}(t, x)=u_{n}(x) e^{-i E_{n} t / \hbar}=u_{n}(x) e^{-i \omega_{n} t} \tag{4.3}
\end{equation*}
$$

$$
\begin{aligned}
& u_{n}-\text { spatially varying } \\
& \text { part of the wavefunction } \\
& e^{-i \omega_{n} t} \text {-phase term; } \\
& \omega_{n}=E_{n} / \hbar
\end{aligned}
$$

The particle-in-a-box problem: semiconductor quantum well

Semiconductor quantum well - a thin (few $n m$) layer of material with a bandgap E_{g} is sandwitched between two layers with higher bandgap.

A particle that can move in only one dimension (z):

Quantum well:
$\mathrm{U}=0$ between $0<\mathrm{z}<\mathrm{L}$, and
$\mathrm{U}=\infty$ outside $\{0<\mathrm{z}<\mathrm{L}\}$

The particle-in-a-box problem

The Hamiltonian $\widehat{H}: \quad \widehat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d z^{2}}+U(z)$
Solve (4.2): $\widehat{H} u_{n}=E_{n} u_{n} \rightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d z^{2}}+0=E_{n} \psi \rightarrow \frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d z^{2}}+E_{n} \psi=0$
Rewrite this: $\quad \frac{d^{2} \psi}{d z^{2}}+\kappa^{2} \psi=0, \quad \kappa^{2}=\frac{E_{n}}{\left(\frac{\hbar^{2}}{2 m}\right)}$
A particle that can move in only one dimension. Quantum well:
$\mathrm{U}=0$ between $0<z<L$, and
$\mathrm{U}=\infty$ outside $\{0<\mathrm{z}<\mathrm{L}\}$

The particle-in-a-box problem

$$
\begin{array}{rlr}
\psi_{n} \rightarrow u_{n} & =C_{n} \sin \left(\frac{\pi n}{L} z\right) e^{-i \omega_{n} t} ; & \quad E_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi}{L}\right)^{2} n^{2}, \quad \mathrm{n}=1,2,3 \ldots \\
u_{1} & =C_{1} \sin \left(\frac{\pi}{L} z\right) & \\
u_{2} & =C_{2} \sin \left(\frac{2 \pi}{L} z\right) & C_{n}=\sqrt{\frac{2}{L}} \\
u_{3} & =C_{3} \sin \left(\frac{3 \pi}{L} z\right) & \text { normalizing factor } \\
\ldots & \\
u_{n} & =C_{n} \sin \left(\frac{n \pi}{L} z\right) \\
C_{n} \text { is such that } & \int \psi^{*} \psi d x=1 \quad \text {-i.e. a particle should be somewhere }
\end{array}
$$

$$
\text { Note that } \begin{align*}
\int_{0}^{L} u_{m} u_{n} d z & =1 \text { for } m=n, \tag{4.6}\\
& =0 \text { for } m \neq n
\end{align*}
$$

Eigenfunctions are orthogonal!

The particle-in-a-box problem

$$
\begin{aligned}
& \text { If we have an operator } \widehat{\boldsymbol{O}} \text {, the expectation value of the associated physical quantity is } \\
& \qquad \int \psi^{*}(\widehat{\boldsymbol{O}} \psi) d^{3} r \rightarrow<\psi|\widehat{\boldsymbol{O}}| \psi>
\end{aligned}
$$

For the \mathbf{E}_{1} (ground) state: $\quad \psi_{1}=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi}{L} z\right) e^{-i \omega_{1} t}$;
what is the average position in space of the electron

$$
<x>=\int \psi_{\nmid}^{*} z \psi_{1} d z=\int \frac{2}{L} \sin ^{2}\left(\frac{\pi}{L} z\right) z d z=\cdots \ldots \ldots=\boldsymbol{L} / 2
$$

what is the average momentum of the electron

$$
<p>=\int \psi^{*}(\underbrace{-i \hbar \frac{d}{d z}} \psi) d z=-\int \frac{2}{L}\left(\frac{\pi}{L}\right) \sin \left(\frac{\pi}{L} z\right) \cos \left(\frac{\pi}{L} z\right) d z=0
$$

what is the average energy of the electron

$$
<E>=\int \psi^{*}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d z^{2}}\right) d z=\int \frac{2}{L} \frac{\hbar^{2}}{2 m}\left(\frac{\pi}{L}\right)^{2} \sin ^{2}\left(\frac{\pi}{L} z\right) d z=\frac{\hbar^{2}}{2 \boldsymbol{m}}\left(\frac{\boldsymbol{\pi}}{\boldsymbol{L}}\right)^{2}
$$

Susceptibilities - derived via perturbation solution to Schrödinger's equation

In QM: we have a particle with a Hamiltonian $\widehat{H_{0}}$ and an external EM field, which we regard as a perturbation:

$$
\widehat{H}=\widehat{H_{0}}+\widehat{V}(\mathrm{t}) \mathbf{k}_{\text {perturation }}
$$

Now introduce $\lambda(0<\lambda<1)$ a 'tuning' parameter (strength of the interaction): $\lambda=0$ field is off; $\lambda=1$ field is on

$$
\widehat{H}=\widehat{H_{0}}+\lambda \widehat{V}(\mathrm{t})
$$

Seek a solution to Schrödinger's equation in the form of a power series in λ

$$
\psi(r, t)=\psi^{(0)}(r, t)+\lambda \psi^{(1)}(r, t)+\lambda^{2} \psi^{(2)}(r, t)+\ldots
$$

Plug this $\psi(r, t)$ into $\boldsymbol{i} \hbar \frac{\boldsymbol{d} \boldsymbol{\psi}}{\boldsymbol{d} t}=\widehat{\boldsymbol{H}} \boldsymbol{\psi}$ equation and require that the terms proportional to λ^{N} satisfy the equality separately $(N=0,1,2, \ldots$):

$$
i \hbar\left(\frac{\partial \psi^{(0)}}{\partial t}+\lambda \frac{\partial \psi^{(1)}}{\partial t}+\lambda^{2} \frac{\partial \psi^{(2)}}{\partial t}+. .\right)=\widehat{\underline{H_{0}} \psi^{(0)}}+\widehat{\widehat{H}_{0}} \lambda \psi^{(1)}+\widehat{H_{0}} \lambda^{2} \psi^{(2)}+\lambda \widehat{\underline{V} \psi^{(0)}}+\lambda^{2} \widehat{\underline{V} \psi^{(1)}}+\lambda^{3} \widehat{V} \psi^{(2)}+. .
$$

$$
\begin{array}{ll}
(0 \text {-order approxim.) } & i \hbar \frac{\partial \psi^{(0)}}{v t}=\widehat{H_{0}} \psi^{(0)} \\
(1 \text {-st -order) } & i \hbar \frac{\partial \psi^{(1)}}{\partial t}=\widehat{H_{0}} \psi^{(1)}+\widehat{V} \psi^{(0)} \\
\text { (2-nd -order) } & i \hbar \frac{\partial \psi^{(2)}}{\partial t}=\widehat{H_{0}} \psi^{(2)}+\widehat{V} \psi^{(1)} \\
\text { … } & i \hbar \frac{\partial \psi^{(N)}}{\partial t}=\widehat{H_{0}} \psi^{(N)}+\widehat{V} \psi^{(N-1)} \\
(N \text {-th -order) } &
\end{array}
$$

- simply Schrödinger's equation for the atom in the absence of its interaction with the applied field

$$
\begin{aligned}
& \text { Once } \psi^{(N-1)} \text { is known one } \\
& \text { can find } \psi^{(N)}
\end{aligned}
$$

Susceptibilities - derived via perturbation solution to Schrödinger's equation Solution strategy

Start form $\psi^{(0)}$ - the the solution of (4.1) corresponding to $\widehat{H_{0}}$; the system is in the ground state
Use (4.7) to calculate
$\psi^{(1)}$ from known $\psi^{(0)} \quad\left(\psi^{(1)} \sim E\right.$, linear in the applied field amplitude)
$\psi^{(2)}$ from known $\psi^{(1)}\left(\psi^{(2)} \sim E^{2}\right.$, quadratic in the applied field)
$\psi^{(3)}$ from known $\psi^{(2)}\left(\psi^{(3)} \sim E^{3}\right.$, cubic in the applied field)

We need to find polarization = dipole moment per unit volume as in the expression from L2: $\boldsymbol{D}=\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}$

According to the rules of quantum mechanics, the expectation value of the electric dipole moment \boldsymbol{p} (per one electron) is given by $\quad<\boldsymbol{p}\rangle=\langle\psi| \widehat{\boldsymbol{\mu}}|\psi\rangle$
where $\widehat{\mu}=-e \widehat{\boldsymbol{r}}$ is the electric dipole moment operator and $-e$ is the charge of the electron.

QM perturbation solution

Initially, atom is in the state 1 (ground state) so that the solution to the 0 -order equation is:

$$
\psi^{(0)}(r, t)=u_{1}(r) e^{-i E_{1} t / \hbar}=u_{1}(r) e^{-i \omega_{1} t}, \quad \text { with } \quad \omega_{1}=E_{1} / \hbar
$$

Now, expand $\psi^{(N)}(N=1,2,3 \ldots)$ as a sum of energy eigenfunctions of an unperturbed system:

$$
\psi^{(N)}(r, t)=\sum_{l} a_{l}^{(N)}(t) u_{l}(r) e^{-i \omega_{l} t} \quad \text { (4.9) } \quad \text { with } \omega_{l}=E_{l} / \hbar \quad \begin{aligned}
& \left|a_{l}^{(1) \mid}\right| \text { is the probabilty of } \\
& \text { being at a given energy state }
\end{aligned}
$$

$u_{l}(r)$ - constitute a complete set of orthogonal basis functions in the sense $\int u_{m}^{*} u_{n} d^{3} r=1$ if $m=n$, and $=0$ if $m \neq n$

Now plug (4.9) into (4.7d) : $i \hbar \frac{\partial \psi^{(N)}}{\partial t}=\bar{H}_{0} \psi^{(N)}+\tilde{\nabla}^{(N-1)}$ (4.7d)

$$
i \hbar \sum_{l}\left(\dot{a}_{l}^{(N)}-i \omega_{l} e_{l}^{(N)}\right) u_{l} e^{-i \omega_{l} t}=\sum_{l} \underbrace{\widehat{H}_{l}}_{a_{l}^{(N)} E_{n} u_{l}} a_{l}^{(N)} \underbrace{}_{l} \omega_{l} a_{l}^{(N)} u_{l}
$$

$$
\longrightarrow \quad i \hbar \sum_{l} \dot{a}_{l}^{(N)} u_{l} e^{-i \omega_{l} t}=\sum_{l} \hat{V} a_{l}^{(N-1)} u_{l} e^{-i \omega_{l} t}
$$

multiply each side from the left by u_{m}^{*} and integrate over all space (take into account orthogonality for $m \neq l$)

$$
i \hbar \dot{a}_{m}^{(N)} e^{-i \omega_{m} t}=\sum_{l} a_{l}^{(N-1)} e^{-i \omega_{l} t} \int u_{m}^{*} \hat{V} u_{l} d^{3} r=\sum_{l} V_{m l} a_{l}^{(N-1)} e^{-i \omega_{l} t}
$$

QM perturbation solution

$$
\text { from the previous slide } \quad i \hbar \dot{a}_{m}^{(N)} e^{-i \omega_{m} t}=\sum_{l} V_{m l} a_{l}^{(N-1)} e^{-i \omega_{l} t}
$$

We have introduced the matrix elements of the perturbing Hamiltonian

$$
V_{m l} \equiv\left\langle u_{m}\right| \hat{V}\left|u_{l}\right\rangle=\int u_{m}^{*} \hat{V} u_{l} d^{3} r
$$

Dirak notation

$$
\begin{equation*}
\rightarrow \quad \dot{a}_{m}^{(N)}(t)=(i \hbar)^{-1} \sum_{l} a_{l}^{(N-1)} V_{m l} e^{i \omega_{m l} t} \tag{4.10}
\end{equation*}
$$

Matrix elements of the perturbing Hamiltonian $V_{m l}$ and $\mu_{m l}$

In QM, the interaction Hamiltonian of the atom with the electromagnetic field is the form:

$$
\hat{V}(t)=-\hat{\boldsymbol{\mu}} \cdot \tilde{\mathbf{E}}(t)
$$

where $\widehat{\boldsymbol{\mu}}=-e \hat{\boldsymbol{r}}$, is the electric dipole moment operator and $-e$ is the charge of the electron.

Thus $\quad V_{m l}=-\mu_{m l} E(t)$
where the matrix element $\mu_{m l}$ is the electric dipole (dipole transition moment).

$$
\begin{gather*}
\widetilde{\mu_{m l}}=\int \psi_{m}^{*} \widehat{\boldsymbol{\mu}} \psi_{l} d^{3} r=\int \psi_{m}^{*}(-e \boldsymbol{r}) \psi_{l} d^{3} r \tag{4.12a}\\
\mu_{l m}=\mu_{m l}^{*}
\end{gather*}
$$

if we neglect the phase factor $e^{i \omega_{m l} t}$ in (4.12a), it becomes

$$
\begin{equation*}
\mu_{m l}=\int u_{m}^{*} \widehat{\boldsymbol{\mu}} u_{l} d^{3} r=\int u_{m}^{*}(-e \boldsymbol{r}) u_{l} d^{3} r \tag{4.12b}
\end{equation*}
$$

in one dimensional case:

$$
\begin{equation*}
\mu_{m l}=(-e) \int u_{m}^{*} z u_{l} d z \tag{4.12c}
\end{equation*}
$$

Matrix elements of the perturbing Hamiltonian $V_{m l}$ and $\mu_{m l}$ Example: one dimensional case (particle-in-a-box)

$$
\begin{equation*}
\text { from the previous slide } \quad \mu_{m l}=(-e) \int u_{m}^{*} z u_{l} d z \tag{4.12c}
\end{equation*}
$$

Let us calculate the electric dipole transition moment between u_{1} and u_{2} energy eigenfunctions

$$
\begin{aligned}
& u_{1}=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi}{L} z\right) \\
& u_{2}=\sqrt{\frac{2}{L}} \sin \left(\frac{2 \pi}{L} z\right) \\
& \mu_{12}=(-e) \int u_{1}^{*} z u_{2} d z=(-e) \frac{2}{L} \int_{0}^{L} \mathrm{z} \sin \left(\frac{\pi}{L} z\right) \sin \left(\frac{2 \pi}{L} z\right) d z= \\
&=e \frac{16}{9 \pi^{2}} L=0.18 e L
\end{aligned}
$$

Linear susceptibility $\chi^{(1)}$ - perturbation solution

1st -order perturbation solution, $N=1$

Calculate $1^{\text {st }}$-order correction - for induced linear polarization $P{ }^{(1)}$

$\dot{a}_{m}^{(N)}(t)=(i \hbar)^{-1} \sum_{l} a_{l}^{(N-1)} V_{m l} e^{i \omega_{m l} t}$
where $\omega_{m l} \equiv \omega_{m}-\omega_{l}$
(4.10)

Find $\psi^{(1)}$

By integrating (4.10) and taking into account that $a_{l}^{(N-1)}=a_{l}^{(0)}=a_{1}^{(0)}=1$ (only ground state is occupied), we get

$$
\begin{array}{cc}
a_{m}^{(1)}(t)=\int_{-\infty}^{t}(i \hbar)^{-1} V_{m 1} e^{i \omega_{m 1} t^{\prime}} d t^{\prime}=\int_{-\infty}^{t}(i \hbar)^{-1}\left[-\mu_{m 1} E\left(t^{\prime}\right)\right] e^{i \omega_{m 1} t^{\prime}} d t^{\prime} & E(t)=\frac{1}{2} E e^{-i \omega t}+\frac{1}{2} E e^{+i \omega t} \\
=(i \hbar)^{-1}\left(-\mu_{m 1}\right)\left\{\int_{-\infty}^{t} \frac{1}{2}\left\{E e^{-i \omega t^{\prime}} e^{i \omega_{m 1} t^{\prime}}+E e^{+i \omega t^{\prime}} e^{i \omega_{m 1} t^{\prime}}\right\} d t^{\prime}\right. \\
=\frac{1}{2} \frac{i}{\hbar} \mu_{m 1} E\left\{\int_{-\infty}^{t} e^{i\left(\omega_{m 1}-\omega\right) t^{\prime}} d t^{\prime}+\int_{-\infty}^{t} e^{i\left(\omega_{m 1}+\omega\right) t^{\prime}} d t^{\prime}\right\}=\frac{1}{2 \hbar}\left\{\frac{\mu_{m 1} E}{\left(\omega_{m 1}-\omega\right)} e^{i\left(\omega_{m 1}-\omega\right) t}+\frac{\mu_{m 1} E}{\left(\omega_{m 1}+\omega\right)} e^{i\left(\omega_{m 1}+\omega\right) t}\right\}
\end{array}
$$

Finally,

$$
\begin{align*}
& \psi^{(1)}=\sum_{m} a_{m}^{(1)}(t) u_{m}(r) e^{-i \omega_{m} t} \\
& =\sum_{m} \frac{1}{2 \hbar}\left\{\frac{\mu_{m 1} E}{\left(\omega_{m 1}-\omega\right)} e^{i\left(\omega_{m 1}-\omega\right) t}+\frac{\mu_{m 1} E}{\left(\omega_{m 1}+\omega\right)} e^{i\left(\omega_{m 1}+\omega\right) t}\right\} u_{m}(r) e^{-i \omega_{m} t} \\
& \quad=\frac{1}{2 \hbar} \sum_{m}\left\{\frac{\mu_{m 1} E}{\left(\omega_{m 1}-\omega\right)} e^{-i \omega_{1} t-i \omega t}+\frac{\mu_{m 1} E}{\left(\omega_{m 1}+\omega\right)} e^{-i \omega_{1} t+i \omega t}\right\} u_{m}(r) \tag{4.14}
\end{align*}
$$

1st -order perturbation solution

The 1-st order-corrected time-dependent wave function is:

$$
\psi(r, t)=\psi^{(0)}(r, t)+\psi^{(1)}(r, t)
$$

Polarization induced per atom is: $\left\langle p^{(1)}\right\rangle=\left\langle\psi^{(0)}+\psi^{(1)}\right| \widehat{\boldsymbol{\mu}}\left|\psi^{(0)}+\psi^{(1)}\right\rangle$
see (4.8)

$$
=\left\langle\psi^{(0)}\right| \widehat{\boldsymbol{\mu}}\left|\psi^{(1)}\right\rangle+\left\langle\psi^{(1)}\right| \widehat{\boldsymbol{\mu}}\left|\psi^{(0)}\right\rangle \quad \text { only this combination gives polarization proportional to } E
$$

$\left\langle\psi^{(0)}\right| \widehat{\mu}\left|\psi^{(1)}\right\rangle=\left\langle u_{1} e^{-i \omega_{1} t}\right| \widehat{\mu}\left|\frac{1}{2} \sum_{m} \frac{\mu_{m 1}}{\hbar}\left[\frac{E e^{-i \omega t}}{\left(\omega_{m 1}-\omega\right)}+\frac{E e^{i \omega t}}{\left(\omega_{m 1} 1+\omega\right)}\right] u_{m} e^{-i \omega_{1} t}\right\rangle=\frac{1}{2} \sum_{m} \frac{\mu_{m 1}}{\hbar}\left[\frac{E e^{-i \omega t}}{\left(\omega_{m 1}-\omega\right)}+\frac{E e^{i \omega t}}{\left(\omega_{m 1}+\omega\right)}\right]\left\langle u_{1}\right| \widehat{\mu}\left|u_{m}\right\rangle=\frac{1}{2} \sum_{m} \frac{\mu_{1 m} \mu_{m 1}}{\hbar}\left[\frac{E e^{-i \omega t}}{\left(\omega_{m 1}-\omega\right)}+\frac{E e^{+i \omega t}}{\left(\omega_{m 1}+\omega\right)}\right]$ similarly,
$\left\langle\psi^{(1)}\right| \hat{\boldsymbol{\mu}}\left|\psi^{(0)}\right\rangle=\left\langle\frac{1}{2} \sum_{m} \frac{\mu_{m 1}}{\hbar}\left[\frac{E e^{-i \omega t}}{\left(\omega_{m 1}-\omega\right)}+\frac{E e^{i \omega t}}{\left(\omega_{m 1}+\omega\right)}\right] u_{m} e^{-i \omega_{1} t}\right| \widehat{\boldsymbol{\mu}}\left|u_{1} e^{-i \omega_{1} t}\right\rangle=\frac{1}{2} \sum_{m} \frac{\mu_{1 m} \mu_{m 1}}{\hbar}\left[\frac{E e^{+i \omega t}}{\left(\omega_{m 1}-\omega\right)}+\frac{E e^{-i \omega t}}{\left(\omega_{m 1}+\omega\right)}\right]$

$$
\text { Thus }\left\langle p^{(1)}\right\rangle=\sum_{m} \frac{\left|\mu_{1 m}\right|^{2}}{2 \hbar}\left[\frac{1}{\left(\omega_{m 1}-\omega\right)}+\frac{1}{\left(\omega_{m 1}+\omega\right)}\right] E e^{-i \omega t}+\text { c.c. }
$$

The linear polarization (dipole moment per unit volume) is: $P^{(1)}=N p^{(1)}$ and since $P^{(1)}=\epsilon_{0} \chi^{(1)} E$, and $E=\frac{1}{2} E e^{-i \omega t}+c . c$., we get :

And finally:

$$
\begin{equation*}
\chi^{(1)}=\frac{N}{\epsilon_{0} \hbar} \sum_{m}\left\{\frac{\left|\mu_{1 m}\right|^{2}}{\left(\omega_{m 1}-\omega\right)}+\frac{\left|\mu_{1 m}\right|^{2}}{\left(\omega_{m 1}+\omega\right)}\right\} \tag{4.15}
\end{equation*}
$$

1st -order perturbation solution

Let us simplify (4.11) - take a system with just 3 levels ("1" is the ground state) and leave only resonant terms

$$
\begin{array}{ll}
\chi^{(1)}=\frac{N}{\epsilon_{0} \hbar} \sum_{m}\left\{\frac{\left|\mu_{1 m}\right|^{2}}{\left(\omega_{m 1}-\omega\right)}+\frac{\left|\mu_{1 m}\right|^{2}}{\left(\omega_{211}+\omega\right)}\right\} & \longrightarrow \\
(\mathrm{m}=2,3) \longrightarrow & \frac{N}{\epsilon_{0} \hbar}\left\{\frac{\left|\mu_{12}\right|^{2}}{\left(\omega_{21}-\omega\right)}+\frac{\left|\mu_{13}\right|^{2}}{\left(\omega_{31}-\omega\right)}\right\}
\end{array}
$$

This formula makes sense: susceptibility χ, and refractive index

$$
n=\sqrt{1+\chi}
$$

- grow with frequency between the two poles

1st -order QM perturbation solution: compare to classical model

$$
\begin{equation*}
\chi^{(1)}=\frac{N}{\epsilon_{0} \hbar} \sum_{m}\left\{\frac{\left|\mu_{1 m}\right|^{2}}{\left(\omega_{m 1}-\omega\right)}+\frac{\left|\mu_{1 m}\right|^{2}}{\left(\omega_{m 1}+\omega\right)}\right\} \tag{4.16}
\end{equation*}
$$

assume that the dominant is only one transition 1-3

$$
\begin{equation*}
\chi^{(1)}=\frac{N}{\epsilon_{0} \hbar} \frac{\left|\mu_{13}\right|^{2}}{\left(\omega_{31}-\omega\right)} \tag{4.16a}
\end{equation*}
$$

compare to classical osillator model

$$
\chi^{(1)}=\frac{N q^{2} / m}{\epsilon_{0}\left(\omega_{0}^{2}-\omega^{2}+i \omega \gamma\right)}
$$

see (3.3d) from L3

$$
\begin{gathered}
\omega_{0}^{2}-\omega^{2}+i \omega \gamma=\left(\omega_{0}+\omega\right)\left(\omega_{0}-\omega\right)+i \omega \gamma \approx 2 \omega_{0}\left(\omega_{0}-\omega\right)+i \omega \gamma \approx 2 \omega_{0}\left(\omega_{0}-\omega+\frac{i \gamma}{2}\right) \\
\chi^{(1)} \approx \frac{N e^{2}}{2 m \epsilon_{0} \omega_{0}\left(\omega_{0}-\omega+\frac{i \gamma}{2}\right)}
\end{gathered}
$$

$$
\left|\mu_{13}\right|^{2} \ll \frac{\hbar e^{2}}{2 m \omega_{0}}
$$

2nd -order nonlinearity $\chi^{(2)}$ - perturbation solution

2nd -order nonlinearity

Now, calculate the $2^{\text {nd }}$-order correction - nonlinear polarization $\boldsymbol{P}^{(2)}$

Optical input field

$$
E(t)=\frac{1}{2} E e^{-i \omega t}+\frac{1}{2} E e^{+i \omega t}
$$

($\psi^{(1)} \sim E$, linear in the applied field amplitude)
($\psi^{(2)} \sim E^{2}$, quadratic in the applied field)
($\psi^{(3)} \sim E^{3}$, cubic in the applied field)
The 2 nd-order contribution to the induced dipole moment per atom is :

$$
<p^{(2)}>=<\psi^{(0)}+\psi^{(1)}+\psi^{(2)}|\widehat{\boldsymbol{\mu}}| \psi^{(0)}+\psi^{(1)}+\psi^{(2)}>
$$

$$
\longrightarrow \quad\left\langle\tilde{\mathbf{p}}^{(2)}\right\rangle=\left\langle\psi^{(0)}\right| \hat{\boldsymbol{\mu}}\left|\psi^{(2)}\right\rangle+\left\langle\psi^{(1)}\right| \hat{\boldsymbol{\mu}}\left|\psi^{(1)}\right\rangle+\left\langle\psi^{(2)}\right| \hat{\boldsymbol{\mu}}\left|\psi^{(0)}\right\rangle
$$

we have from previous:

$$
\begin{aligned}
\psi^{(0)}(r, t) & =u_{1}(r) e^{-i E_{1} t / \hbar}=u_{1} e^{-i \omega_{1} t}, \\
\psi^{(1)}(r, t) & =\frac{1}{2 \hbar} \sum_{m}\left\{\frac{\mu_{m 1} E}{\left(\omega_{m 1}-\omega\right)} e^{-i \omega t}+\frac{\mu_{m 1} E}{\left(\omega_{m 1}+\omega\right)} e^{i \omega t}\right\} u_{m}(r) \\
\psi^{(2)}(r, t) & =?
\end{aligned}
$$

2nd -order nonlinearity

From (4.9-4.10)

$$
\psi^{(2)}(r, t)=\sum_{n} a_{n}^{(2)}(t) u_{n}(r) e^{-i \omega_{n} t}
$$

$$
\dot{a}_{n}^{(2)}(t)=(i \hbar)^{-1} \sum_{m} a_{m}^{(1)} V_{n m} e^{i \omega_{n m} t}=
$$

$$
a_{m}^{(1)}=\frac{1}{2 \hbar}\left\{\frac{\mu_{m 1} E}{\left(\omega_{m 1}-\omega\right)} e^{i\left(\omega_{m 1}-\omega\right) t}+\frac{\mu_{m 1} E}{\left(\omega_{m 1}+\omega\right)} e^{i\left(\omega_{m 1}+\omega\right) t}\right\}=\frac{1}{2 \hbar} \sum_{p} \frac{\mu_{m 1} E}{\left(\omega_{m 1}-\omega_{p}\right)} e^{i\left(\omega_{m 1}-\omega_{p}\right) t}
$$

$$
V_{n m}=\left(-\mu_{n m}\right) E(t)=\frac{1}{2} \sum_{q}\left(-\mu_{n m}\right) E e^{i\left(\omega_{n m}-\omega_{q}\right) t}
$$

$$
=(i \hbar)^{-1} \sum_{m} \frac{1}{4 \hbar} \sum_{s} \frac{\mu_{m 1} E}{\left(\omega_{m 1}-\omega_{S}\right)} e^{i\left(\omega_{m 1}-\omega_{p}\right) t} \sum_{q}\left(-\mu_{n m}\right) E e^{i\left(\omega_{n m}-\omega_{q}\right) t}=
$$

$$
=\frac{i}{4 \hbar^{2}} \sum_{m, p, q} \frac{\mu_{m m} \mu_{m 1} E^{2}}{\left(\omega_{m 1}-\omega_{s}\right)} e^{i\left(\omega_{n 1}-\omega_{p}-\omega_{q}\right) t}=
$$

$$
\begin{equation*}
a_{n}^{(2)}(t)=\int_{-\infty}^{t} \dot{a}_{n}^{(2)}\left(t^{\prime}\right) d t^{\prime}=\frac{i}{4 \hbar^{2}} \sum_{m, p, q} \frac{\mu_{n m} \mu_{m 1} E^{2}}{\left(\omega_{n 1}-\omega_{p}-\omega_{q}\right)\left(\omega_{m 1}-\omega_{s}\right)} e^{i\left(\omega_{n 1}-\omega_{p}-\omega_{q}\right) t} \tag{4.17}
\end{equation*}
$$

2nd -order nonlinearity

Finally,

$$
\left\langle\tilde{\mathbf{p}}^{(2)}\right\rangle=\left\langle\psi^{(0)}\right| \hat{\boldsymbol{\mu}}\left|\psi^{(2)}\right\rangle+\left\langle\psi^{(1)}\right| \hat{\boldsymbol{\mu}}\left|\psi^{(1)}\right\rangle+\left\langle\psi^{(2)}\right| \hat{\boldsymbol{\mu}}\left|\psi^{(0)}\right\rangle,
$$

$$
\begin{equation*}
<p^{(2)}>=\frac{1}{4 \hbar^{2}} \sum_{m, n, q, p}\left\{\frac{\mu_{1 n} \mu_{n m} \mu_{m 1} E\left(\omega_{p}\right) E\left(\omega_{q}\right)}{\left(\omega_{n 1}-\omega_{p}-\omega_{q}\right)\left(\omega_{m 1}-\omega_{p}\right)} e^{-i\left(\omega_{p}+\omega_{q}\right) t}+\frac{\mu_{1 n} \mu_{n m} \mu_{m 1} E\left(\omega_{p}\right) E\left(\omega_{q}\right)}{\left(\omega_{n 1}-\omega_{p}-\omega_{q}\right)\left(\omega_{m 1}-\omega_{p}\right)} e^{i\left(\omega_{p}+\omega_{q}\right) t}+\frac{\mu_{1 n} \mu_{n m} \mu_{m 1} E\left(\omega_{p}\right) E\left(\omega_{q}\right)}{\left(\omega_{n 1}-\omega_{q}\right)\left(\omega_{m 1}-\omega_{p}\right)} e^{-i\left(\omega_{p}-\omega_{q}\right) t}\right. \tag{4.18}
\end{equation*}
$$

$$
\begin{aligned}
& <p^{(2)}>=\ldots \\
& + \begin{cases}<u_{1} e^{-i \omega_{1} t}|\mu| \frac{1}{4 \hbar^{2}} \sum_{m, n, q, p} \frac{\mu_{n m} \mu_{m 1} E\left(\omega_{p}\right) E\left(\omega_{q}\right)}{\left(\omega_{n 1}-\omega_{p}-\omega_{q}\right)\left(\omega_{m 1}-\omega_{p}\right)} u_{n} e^{-i\left(\omega_{1}+\omega_{p}+\omega_{q}\right) t}> & =\frac{1}{4 \hbar^{2}} \sum_{m, n, q, p} \frac{\mu_{1 n} \mu_{n m} \mu_{m 1} E\left(\omega_{p}\right) E\left(\omega_{q}\right)}{\left(\omega_{n 1}-\omega_{p}-\omega_{q}\right)\left(\omega_{m 1}-\omega_{p}\right)} e^{-i\left(\omega_{p}+\omega_{q}\right) t} \\
\text { its complex conjugate } & =\frac{1}{4 \hbar^{2}} \sum_{m, n, q, p} \frac{\mu_{1 n} \mu_{n m} \mu_{m 1} E\left(\omega_{p}\right) E\left(\omega_{q}\right)}{\left(\omega_{n 1}-\omega_{p}-\omega_{q}\right)\left(\omega_{m 1}-\omega_{p}\right)} e^{i\left(\omega_{p}+\omega_{q}\right) t}\end{cases} \\
& <\frac{1}{2 \hbar} \sum_{m, p} E\left(\omega_{p}\right) \frac{\mu_{m 1}}{\left(\omega_{m 1}-\omega_{p}\right)} u_{m} e^{-i\left(\omega_{1}+\omega_{p}\right) t}|\mu| \frac{1}{2 \hbar} \sum_{m, p} E\left(\omega_{p}\right) \frac{\mu_{m 1}}{\left(\omega_{m 1}-\omega_{p}\right)} u_{m} e^{-i\left(\omega_{1}+\omega_{p}\right) t}>=\frac{1}{4 \hbar^{2}} \sum_{m, n, q, p} \frac{\mu_{1 n} \mu_{n m} \mu_{m 1} E\left(\omega_{p}\right) E\left(\omega_{q}\right)}{\left(\omega_{n 1}-\omega_{q}\right)\left(\omega_{m 1}-\omega_{p}\right)} e^{-i\left(\omega_{p}-\omega_{q}\right) t}
\end{aligned}
$$

2nd -order nonlinearity - perturbation solution

(see Stegeman or Boyd for details)

Finally, the 2nd-order contribution to the induced dipole moment per unit volume:

The nonlinear succeptibility is

$$
P^{(2)}=N p^{(2)} \quad \chi^{(2)}=\frac{2}{\epsilon_{0}} \frac{P^{(2)}(2 \omega)}{E(\omega)^{2}}
$$

$$
\begin{equation*}
\chi^{(2)}=\frac{N}{\epsilon_{0} \hbar^{2}} \sum_{m, n, q, p}\left\{\frac{\mu_{1 n} \mu_{n m} \mu_{m 1}}{\left(\omega_{n 1}-\omega_{p}-\omega_{q}\right)\left(\omega_{m 1}-\omega_{p}\right)}+\frac{\mu_{1 n} \mu_{n m} \mu_{m 1}}{\left(\omega_{m 1}+\omega_{p}+\omega_{q}\right)\left(\omega_{n 1}+\omega_{q}\right)}+\frac{\mu_{1 n} \mu_{n m} \mu_{m 1}}{\left(\omega_{n 1}+\omega_{q}\right)\left(\omega_{m 1}-\omega_{p}\right)}\right\} \tag{4.19}
\end{equation*}
$$

$T w o$ fields: ω_{p} and ω_{q} run through $\pm \omega_{p} ; \omega_{q}$
One field: ω_{p} and ω_{q} run through $\pm \omega$
Even for a 3-level system, there are $2 \times 2 \times 4 \times 4=64$ elements in this sum !

$$
\begin{align*}
& =\frac{N}{\epsilon_{0} \hbar^{2}}\left\{\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}-\omega_{p}-\omega_{q}\right)\left(\omega_{21}-\omega_{p}\right)}+\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}-\omega_{p}-\omega_{q}\right)\left(\omega_{21}-\omega_{q}\right)}+\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}-\omega_{q}\right)\left(\omega_{21}-\omega_{p}\right)}\right. \\
& +\frac{\mu_{12} \mu_{23} \mu_{31}}{\left(\omega_{21}-\omega_{p}-\omega_{q}\right)\left(\omega_{31}-\omega_{p}\right)}+\frac{\mu_{12} \mu_{23} \mu_{31}}{\left(\omega_{21}-\omega_{p}-\omega_{q}\right)\left(\omega_{31}-\omega_{q}\right)}+\frac{\mu_{12} \mu_{23} \mu_{31}}{\left(\omega_{21}-\omega_{q}\right)\left(\omega_{31}-\omega_{p}\right)} \\
& +\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}+\omega_{p}-\omega_{q}\right)\left(\omega_{21}-\omega_{p}\right)}+\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}-\omega_{p}-\omega_{q}\right)\left(\omega_{21}+\omega_{q}\right)}+\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}-\omega_{q}\right)\left(\omega_{21}+\omega_{p}\right)} \tag{4.20}\\
& +\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}+\omega_{p}+\omega_{q}\right)\left(\omega_{21}-\omega_{p}\right)}+\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}+\omega_{p}+\omega_{q}\right)\left(\omega_{21}-\omega_{q}\right)}+\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}+\omega_{q}\right)\left(\omega_{21}+\omega_{p}\right)} \\
& + \\
& \text { + ... }\}
\end{align*}
$$

2nd -order perturbation solution

Let us now select only resonant terms in (4.13a)

Two fields: ω_{p} and ω_{q} run through $\pm \omega_{p} ; \pm \omega_{q}$

$$
\chi^{(2)}-->\frac{N}{\epsilon_{0} \hbar^{2}}\left\{\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}-\omega_{p}-\omega_{q}\right)\left(\omega_{21}-\omega_{p}\right)}+\frac{\mu_{13} \mu_{32} \mu_{21}}{\left(\omega_{31}-\omega_{p}-\omega_{q}\right)\left(\omega_{21}-\omega_{q}\right)}+\ldots .\right\}
$$

Strictly speaking, transition frequencies ω_{21}, ω_{31} need to be complex quantities $\omega \rightarrow \omega+i \gamma$,
to incorporate damping phenomena into the theory. This allows to avoid infinities at exact resonances.

3nd -order nonlinearity - perturbation solution

from Boyd's book

The QM microscopic expression for $3^{\text {rd }}$ order nonlinear succeptibility $\chi^{(3)}$ looks similar, but even more scary (3 denominators).

$$
\begin{align*}
& \chi_{k j i h}^{(3)}\left(\omega_{\sigma}, \omega_{r}, \omega_{q}, \omega_{p}\right) \\
& =\frac{N}{\epsilon_{0} \hbar^{3}} \mathcal{P}_{I} \sum_{m n v}\left[\frac{\mu_{g \nu}^{k} \mu_{\nu n}^{j} \mu_{n m}^{i} \mu_{m g}^{h}}{\left(\omega_{v g}-\omega_{r}-\omega_{q}-\omega_{p}\right)\left(\omega_{n g}-\omega_{q}-\omega_{p}\right)\left(\omega_{m g}-\omega_{p}\right)}\right. \\
& \quad+\frac{\mu_{g \nu}^{j} \mu_{v n}^{k} \mu_{n m}^{i} \mu_{m g}^{h}}{\left(\omega_{v g}^{*}+\omega_{r}\right)\left(\omega_{n g}-\omega_{q}-\omega_{p}\right)\left(\omega_{m g}-\omega_{p}\right)} \\
& \quad+\frac{\mu_{g \nu}^{j} \mu_{\nu n}^{i} \mu_{n m}^{k} \mu_{m g}^{h}}{\left(\omega_{v g}^{*}+\omega_{r}\right)\left(\omega_{n g}^{*}+\omega_{r}+\omega_{q}\right)\left(\omega_{m g}-\omega_{p}\right)} \\
& \left.\quad+\frac{\mu_{g \nu}^{j} \mu_{\nu n}^{i} \mu_{n m}^{h} \mu_{m g}^{k}}{\left(\omega_{v g}^{*}+\omega_{r}\right)\left(\omega_{n g}^{*}+\omega_{r}+\omega_{q}\right)\left(\omega_{m g}^{*}+\omega_{r}+\omega_{q}+\omega_{p}\right)}\right] \tag{3.2.32}
\end{align*}
$$

Model system for optical $\chi^{(2)}$ nonlinearities: semiconductor quantum well

Symmetric semiconductor quantum well

From previous page:

$$
\chi^{(2)}->\frac{N}{\epsilon_{0} \hbar^{2}}\left\{\frac{\mu_{12} \mu_{23} \mu_{31}}{\left(\omega_{31}-\omega_{p}-\omega_{q}\right)\left(\omega_{21}-\omega_{p}\right)}+\frac{\mu_{12} \mu_{23} \mu_{31}}{\left(\omega_{31}-\omega_{p}-\omega_{q}\right)\left(\omega_{21}-\omega_{q}\right)}+\ldots\right\}
$$

$$
\omega_{p}, \omega_{p} \text { - two pump freqencies }
$$

Note that in a symmetric quantum well
$\mu_{12} \neq 0, \mu_{23} \neq 0$, but $\mu_{31}=0$.

This is quite clear, because there should be some asymmetry to achieve $\chi^{(2)}$
infinite-barrier quantum well (QW)

2nd -order nonlinearity - perturbation solution

Model system for optical nonlinearities: semiconductor quantum well

PHYSICAL REVIEW B VOLUME 44, NUMBER $20 \quad 15$ NOVEMBER 1991-II

Model system for optical nonlinearities: Asymmetric quantum wells
E. Rosencher and Ph. Bois

Laboratoire Central de Recherches, Thomson-CSF, F-91404 Orsay CEDEX, France (Received 23 May 1991)
Optical nonlinearities in asymmetric quantum wells due to resonant intersubband transitions are ana lyzed using a compact density-matrix approach. The large dipolar matrix elements obtained in such structures are partly due to the small effective masses of the host materials and are interpreted in terms of the participation of the whole band structure to the optical transitions. The other origin of the large second-order susceptibilities lies in the possibility of tuning independently the potential shape and the width of asymmetric quantum wells in order to obtain resonances (single or double) for a given excitation wavelength. Using a model based on an infinite-barrier quantum well, we have obtained very gen eral and tractable formulas for second-order susceptibilities at resonance. This model allows us to fix additional fundamental quantum limitations to second-order optical nonlinearities. The "best potentia shapes" maximizing the different susceptibilities are obtained, together with scaling laws as a function of photon energy. Experimental results on different $\mathrm{GaAs} / \mathrm{Al}_{x} \mathrm{Ga}_{1-x}$ As asymmetric quantum wells optimized for second-harmonic generation and optical rectifications are given, with optical rectification coefficients more than 10^{6} higher than in bulk GaAs. These asymmetric quantum wells may be con sidered as giant "pseudomolecules" optimized for large optical nonlinearities in the $8-12-\mu \mathrm{m}$ range.

FIG. 4. Variation-of the product of the normalized dipolar matrix elements $\left|\mu_{12} \mu_{23} \mu_{31}\right| / L d_{v}^{2}$ as a function of deep QW thickness d. The double-resonance conditions $E_{2}-E_{1}=E_{3}$ $-E_{2}=h v$ are imposed in the calculation. The optimum value $d / d_{v}=0.925$ defines the "best potential shape" for secondharmonic generation in step AQW's.

Asymmetric quantum well : now all $\mu_{12} \neq 0, \mu_{13} \neq 0$, and $\mu_{31} \neq 0$.

Morover, SHG $(\omega+\omega=2 \omega)$ with double resonance : $\omega \sim E_{12}, 2 \omega \sim E_{13}$

