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Brief review of quantum mechanics. Quantum-mechanical 

perturbation theory for the nonlinear optical susceptibility. 

1st, 2nd and 3rd order susceptibilities. Susceptibility 

resonances.  

Lecture 4
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QUANTUM MECHANICS FOR PEDESTRIANS

𝑖ℏ𝜓̇ = &𝐻𝜓 the reduced Planck’s constant

𝜓- wave function (is the state vector of the 
quantum system). Contains all information 
about the system

"𝐻 - Hamiltonian operator (~ total energy)

The most general form is the time-dependent Schrödinger equation

or

𝑖ℏ
𝑑𝜓
𝑑𝑡 =

&𝐻𝜓

To apply the Schrödinger equation, write down the Hamiltonian !𝐻 for the system, accounting for the kinetic and 
potential energies of the particles constituting the system, then insert it into the Schrödinger equation. The 
resulting partial differential equation is solved for the wave function 𝜓.

=6.626×10−34/2π = 1.0546×10−34 J.s

For example, the probability of finding a particle at the position r is ~ |ψ(r)|2 =ψ(r)ψ(r)* 

(4.1)

!ψψ∗𝑑!𝑟 = 1 – i.e.  a particle should be somewhere 
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Quantum mechanics for pedestrians

In the coordinate representation, quantum mechanical operators are represented by :
  ordinary numbers for positions
  '𝑥  -> x
  differential operators for momenta
 𝑝̂  -> −𝑖ℏ "

"#

If U does not depend on time, the Schrödinger equation allows stationary solutions
Assume the solution in the form 𝜓 = 𝑣 𝑡 𝑢(𝑥)

Then from (4.1)  

Assume Hamiltonian 4𝐻 that is independent on time:

Here, the form of the Hamiltonian operator comes from classical mechanics, where the Hamiltonian function is the sum of the kinetic and potential 
energies  (Similar to  p2/2m+U(x)  expression in mechanics)

4𝐻 = −
ℏ$

2𝑚
𝑑$𝜓
𝑑𝑥$ + 𝑈(𝑥)

kinetic energy          potential energy     

𝑢! – spatially varying part of the wavefunction
𝜔! = 𝐸!/ℏ𝑖ℏ

𝑑𝜓
𝑑𝑡 =

4𝐻𝜓 𝑢(𝑥)𝑖ℏ
𝑑
𝑑𝑡 𝑣 𝑡 = 𝑣 𝑡 4𝐻𝑢(𝑥)

𝑖ℏ "
"% 𝑣 𝑡 = 𝐸𝑣 𝑡   

𝐸𝑢(𝑥) = 4𝐻𝑢(𝑥)

It is reasonable to separate the variables and write where E is some constant

then 
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Quantum mechanics for pedestrians

4𝐻𝑢(𝑥) = 𝐸𝑢(𝑥)

This is where quantization comes from !

equation for an eigenfunction

𝜔 = 𝐸/ℏ𝑣 𝑡 = 𝑒+,-%/ℏ = 𝑒+,.%

4𝐻𝑢/ = 𝐸/𝑢/ (4.2) Discrete solutions for the spatially varying part
𝐸! has the meaning of energy

Stationary solutions for  𝜓	:  

𝜓! 𝑡, 𝑥 = 𝑢! 𝑥 𝑒"#$'%/ℏ = 𝑢! 𝑥 𝑒"#('%
𝑢! – spatially varying 
part of the wavefunction
𝑒"#$"%  - phase term;   
𝜔!= 𝐸!/ℏ

(4.3)
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The particle-in-a-box problem: semiconductor quantum well

A particle that can move 
in only one dimension (z):

Quantum well: 
U = 0   between 0 < z < L,  
and 
U = ∞  outside  {0 <z < L}

Semiconductor quantum well – a thin (few nm) layer of material with a 
bandgap Eg is sandwitched between two layers with higher bandgap.

|𝜓(𝑧)|2probability:

z=0 z=L

U(z)=0

E3

E2

E1

n=3

n=2

n=1

𝜓(𝑧)

Quantum Cascade Laser
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The particle-in-a-box problem
A particle that can move in only one 
dimension. Quantum well: 
U = 0   between 0 < z < L,  and 
U = ∞  outside {0 < z < L}

z=0 z=L

U=0

The Hamiltonian 4𝐻 : 4𝐻 = −
ℏ$

2𝑚
𝑑$𝜓
𝑑𝑧$ + 𝑈(𝑧)

Solve (4.2): 4𝐻𝑢/ = 𝐸/𝑢/

Rewrite this:  

−
ℏ$

2𝑚
𝑑$𝜓
𝑑𝑧$ + 0 = 𝐸/𝜓 inside the well

ℏ(

./
0(1
02(

+ 𝐸!𝜓 =0
and 𝜓=0 outside the well

0(1
02( + 𝜅

.𝜓 =0,   𝜅!= ""
( ℏ

$

$%)

E3

E2

E1

Solution:  𝜓 = 𝑐𝑜𝑛𝑠𝑡 C sin(𝜅𝑧),  boundary condition : 𝜅𝐿 = π𝑛, 	𝑛 = 1,2,3	. . 

-> 𝜅$=𝐸/ / ( ℏ
%

$:)=(π𝑛/𝐿)$,       -->      𝐸/= ℏ%

$: (
;
<)
$𝑛$,    n=1,2,3 ...

Energy is quantized 
and scales as n2

n=3

n=2

n=1

𝜓/ →	 𝑢/ = 𝐶/sin(
;/
< 𝑧) 𝑒

+,.&%;  

(4.4)
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The particle-in-a-box problem

𝜓/ →	 𝑢/ = 𝐶/sin(
;/
< 𝑧) 𝑒

+,.&%;  

Note that ∫'
( 𝑢)𝑢*𝑑𝑧 = 1	𝑓𝑜𝑟	𝑚 = 𝑛,	

Eigenfunctions are orthogonal!

Thus they constitute a complete 
set of orthogonal basis functions= 0	𝑓𝑜𝑟	𝑚 ≠ 𝑛

𝑢= = 𝐶=sin(
;
< 𝑧) 

𝑢$ = 𝐶$sin(
$;
< 𝑧)

𝑢! = 𝐶! sin(
!;
< 𝑧)

 ....
𝑢/ = 𝐶/ sin(

/;
< 𝑧)

𝐸/= ℏ%

$: (
;
<)
$𝑛$,    n=1,2,3 ...

!𝜓∗𝜓𝑑𝑥 = 1 – i.e.  a particle should be somewhere 𝐶* is such that

𝐶! =
2
𝐿

normalizing factor
(4.5)

(4.6)
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The particle-in-a-box problem

For the E1 (ground) state:

what is the average momentum of the electron

If we have an operator "𝑶, the expectation value of the associated physical quantity is
 ∫𝜓∗ !𝑶𝜓 𝑑4 r	 →	 < ψ| !𝑶| ψ> 

< 𝑥 >= !𝜓=∗𝑧𝜓=𝑑𝑧 =!
2
𝐿 𝑠𝑖𝑛

$(
𝜋
𝐿 𝑧)𝑧𝑑𝑧 = ⋯…… .= 𝑳/2

< 𝑝 >= !𝜓∗(−𝑖ℏ
𝑑
𝑑𝑧 𝜓)𝑑𝑧 = − !

2
𝐿 (
𝜋
𝐿)𝑠𝑖𝑛(

𝜋
𝐿 𝑧)	𝑐𝑜𝑠(

𝜋
𝐿 𝑧)𝑑𝑧	=	0

𝜓= =
$
< sin(

;
< 𝑧) 𝑒

+,.+%;  

what is the average position in space of the electron

what is the average energy of the electron

< 𝐸 >= !𝜓∗(−
ℏ$

2𝑚
𝑑$𝜓
𝑑𝑧$)𝑑𝑧 =

!
2
𝐿
ℏ$

2𝑚 (
𝜋
𝐿)

$𝑠𝑖𝑛$(
𝜋
𝐿 𝑧)𝑑𝑧	=

ℏ𝟐

𝟐𝒎(
𝝅
𝑳)

𝟐

compare to (4.4)
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Susceptibilities – derived via perturbation solution to Schrödinger’s equation

In QM: we have a particle with a Hamiltonian 6𝐻' and an external EM field, which we regard as a perturbation:

4𝐻 = X𝐻A + Y𝑉(t)
perturbation

Now introduce 𝜆	(0 < 𝜆 < 1) a ‘tuning’ parameter (strength of the interaction):   𝜆 = 0 field is off;    𝜆 = 1 field is on  

4𝐻 = X𝐻A + 𝜆	 Y𝑉(t)
Seek a solution to Schrödinger’s equation in the form of a power series in λ

𝜓 𝑟, 𝑡 = 𝜓 A 𝑟, 𝑡 + 𝜆𝜓 = 𝑟, 𝑡 + 𝜆$𝜓 $ 𝑟, 𝑡 +	 …

Plug this 𝜓 𝑟, 𝑡  into 𝒊ℏ 𝒅𝝍𝒅𝒕 = !𝑯𝝍 equation and require that the terms proportional to λN satisfy the equality separately (N=0,1,2,....):  

𝑖ℏ(BC
,

B% + 𝜆 BC
+

B% + 𝜆$ BC
%

B% +. . ) = X𝐻A𝜓 A +X𝐻A𝜆𝜓 = +X𝐻A𝜆$𝜓 $   + 𝜆 Y𝑉𝜓 A + 𝜆$ Y𝑉𝜓 = + 𝜆! Y𝑉𝜓 $ +..

(0 -order approxim.)

(1-st -order)

(2-nd -order)
.....

(N-th -order)

𝑖ℏ BC
, 	

D%  = X𝐻A𝜓 A

𝑖ℏ BC
+ 	

B% = X𝐻A𝜓 = + Y𝑉𝜓 A

𝑖ℏ BC
% 	

B%  = X𝐻A𝜓 $ + Y𝑉𝜓 =

– simply Schrödinger’s equation for the 
atom in the absence of its interaction with 
the applied field

(4.7a)

(4.7b)

(4.7c)

(4.7d)𝑖ℏ BC
- 	

B%  = X𝐻A𝜓 E + Y𝑉𝜓 E+=

  Once 𝜓 E+=  is known one 
can find 𝜓 E
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Susceptibilities – derived via perturbation solution to Schrödinger’s equation

Start form 𝜓(A) -  the the solution of (4.1) corresponding to X𝐻A; the system is in the ground state

Solution strategy

𝜓(=) from known	 𝜓(A)   (	 𝜓(=)~𝐸	, linear in the applied field amplitude )
𝜓($) from known	 𝜓(=) (	 𝜓($)~𝐸$	, quadratic in the applied field ) 
	 𝜓(!) from known	 𝜓($)  (	 𝜓(!)~𝐸!, cubic in the applied field )
........

We need to find polarization = dipole moment per unit volume as in the expression from L2:
 D = 𝜀AE + P
 
According to the rules of quantum mechanics, the expectation value of the electric dipole moment 
p (per one electron) is given by < 𝐩 >	=	< ψ| a𝝁	| ψ> 

Use (4.7) to calculate 

where <𝝁	 = −𝑒<𝒓	 is the electric dipole moment operator and −e is the charge of the electron.

(4.8)
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QM perturbation solution

Initially, atom is in the state 1 (ground state) so that the solution to the 0-order equation is:

𝜓(A) 𝑟, 𝑡 = 𝑢= 𝑟 𝑒+,-+%/ℏ = 𝑢= 𝑟 𝑒+,.+%,    𝑤𝑖𝑡ℎ	 𝜔&=𝐸&/ℏ 

Now, expand 𝜓(E)  (N=1,2,3...) as a sum of energy eigenfunctions of an unperturbed system: 

𝑖ℏ∑L(𝑎̇L
E − 𝑖𝜔L𝑎L

E )	𝑢L	𝑒+,..%= ∑LX𝐻A𝑎L
E 𝑢L𝑒+,..% + ∑L Y𝑉𝑎L

E+= 𝑢L𝑒+,..%

𝜓(E) 𝑟, 𝑡 =g
L

𝑎L
E (𝑡)	𝑢L 𝑟 𝑒+,..% 𝑤𝑖𝑡ℎ	 𝜔'=𝐸'/ℏ	

probability amplitude

(4.9)

time independent energy eigenfunction

its exponential phase factor

Now plug (4.9) into (4.7d) : 

𝑖ℏ∑L 𝑎̇L
E 	𝑢L	𝑒+,..%= ∑L Y𝑉𝑎L

E+= 𝑢L𝑒+,..%

|𝑎&
' |2 is the probabilty of 

being at a given energy state

𝑢/ 𝑟 	– constitute a complete set of orthogonal basis functions in the sense  ∫𝑢)∗ 𝑢* 𝑑1𝑟 = 1	𝑖𝑓	𝑚 = 𝑛,  and = 0	𝑖𝑓	𝑚 ≠ 𝑛 

3

2

1

4

...... 

𝑎L
E 𝐸/𝑢L = ℏ𝜔L𝑎L

E 	𝑢L	

multiply each side from the left by 𝑢)∗  and integrate over all space (take into account orthogonality for  𝑚 ≠ 𝑙 ) 

𝑖ℏ𝑎̇:
E 𝑒+,.2% = ∑L 𝑎L

E+= 𝑒+,..% ∫𝑢:∗ Y𝑉𝑢L𝑑!𝑟 = ∑L𝑉:L𝑎L
E+= 𝑒+,..%
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QM perturbation solution

𝑖ℏ𝑎̇:
E 𝑒+,.2%= ∑L𝑉:L𝑎L

E+= 𝑒+,..%

𝑎̇:
E (𝑡) =(𝑖ℏ)+=	∑L 𝑎L

(E+=)𝑉:L𝑒,.2.%

We have introduced the matrix elements of the 
perturbing Hamiltonian

(4.10)

Dirak notation

à

if we know the (N-1)th order solution, we can get N th order solution - just 

from the previous slide
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Matrix elements of the perturbing Hamiltonian 𝑉!" and 𝜇!"

In QM,  the interaction Hamiltonian of the atom with the electromagnetic field is the form:

where a𝝁 = −𝑒'𝒓 , is the electric dipole moment operator and −e is the charge of the electron.

𝑉:L =	−𝜇:L 𝐸 𝑡Thus

where the matrix element 𝜇!" is the electric dipole (dipole transition moment). 

k𝜇:L = !𝜓:∗ a𝝁𝜓L𝑑!𝑟 = !𝜓:∗ (−𝑒𝒓)𝜓L𝑑!𝑟

in one dimensional case: 𝜇:L = (−𝑒)!𝑢:∗ 𝑧𝑢L𝑑𝑧

(4.11)

(4.12a)

(4.12c)

𝜇/) = 𝜇)/∗

(4.12b)𝜇:L = !𝑢:∗ a𝝁𝑢L𝑑!𝑟 = !𝑢:∗ (−𝑒𝒓) 𝑢L𝑑!𝑟

if we neglect the phase factor 𝑒34%(5 in (4.12a), it becomes 
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Matrix elements of the perturbing Hamiltonian 𝑉!" and 𝜇!"

𝜇:L = (−𝑒)!𝑢:∗ 𝑧𝑢L𝑑𝑧 (4.12c)

Example: one dimensional case (particle-in-a-box)

𝑢= =
$
< sin(

;
< 𝑧) 

𝑢$ =
$
< sin(

$;
< 𝑧)

Let us calculate the electric dipole transition moment between 𝑢6 and 𝑢! energy eigenfunctions 

𝜇=$ = −𝑒 !𝑢=∗𝑧𝑢$𝑑𝑧 = −𝑒
2
𝐿!A

<
z	sin(

𝜋
𝐿 𝑧)	sin(

2𝜋
𝐿 𝑧)	𝑑𝑧 =

= 𝑒
16
9𝜋$ 𝐿 = 0.18𝑒𝐿

from the previous slide
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Linear susceptibility 𝜒(") – perturbation 
solution



16

1st -order perturbation solution, N=1
Calculate 1st -order correction – for induced linear polarization P (1)

𝑎)
6 (𝑡) =∫78

5 (𝑖ℏ)76	𝑉)6𝑒34%)5* 𝑑𝑡9 = ∫78
5 (𝑖ℏ)76	[−𝜇)6𝐸 𝑡′ ]𝑒34%)5* 𝑑𝑡9

= (𝑖ℏ)76	(−𝜇)6){	M
78

5 1
2 {𝐸𝑒

7345*𝑒34%)5* +𝐸𝑒:345*𝑒34%)5*}𝑑𝑡9	

By integrating (4.10) and taking into account that                                             (only ground state is occupied), we get

= =
$
,
ℏ𝜇:=𝐸{	∫+M

% 	𝑒, .2++. %;𝑑𝑡N + ∫+M
% 	𝑒, .2+O. %;𝑑𝑡N	} = =

$ℏ {
P2+-

(.2++.)
𝑒,(.2++.)% + P2+-

(.2+O.)
𝑒,(.2+O.)%}

𝜓(=) =g
:

𝑎:
= (𝑡)	𝑢: 𝑟 𝑒+,.2%

=g
:

1
2ℏ {

𝜇:=𝐸
(𝜔:=−𝜔)

𝑒,(.2++.)% +
𝜇:=𝐸

(𝜔:=+𝜔)
𝑒,(.2+O.)%}	𝑢: 𝑟 𝑒+,.2%

= =
$ℏ
∑: { P2+-

(.2++.)
𝑒+,.+%+,.%+ P2+-

(.2+O.)
𝑒+,.+%O,.%}	 𝑢: 𝑟

Finally,

𝑎/
(<76) = 𝑎/

(') = 𝑎6
(') = 1

Find 𝜓(6) 

𝐸 𝑡 = 6
!𝐸𝑒

7345 + 6
!𝐸𝑒

:345

(4.13)

(4.14)
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1st -order perturbation solution
𝜓 𝑟, 𝑡 = 𝜓 A 𝑟, 𝑡 + 𝜓 = 𝑟, 𝑡The 1-st order-corrected time-dependent wave function is: 

Polarization induced per atom is: 𝑝(=) 	= 𝜓 A + 𝜓 =  |a𝝁| 𝜓 A + 𝜓 =  

only this combination gives polarization proportional to E= 𝜓 A  |a𝝁| 𝜓 =  + 𝜓 =  |a𝝁| 𝜓 A

𝜓 (  |9𝝁| 𝜓 & = 𝑢&𝑒"#$)% |9𝝁| &
)
∑*

+%)
ℏ
[ -.+,-.

($%)"$)
+ -.,-.

($%)1$)
]	𝑢* 𝑒"#$)%  = &

)
∑*

+%)
ℏ
[ -.+,-.

($%)"$)
+ -.,-.

($%)1$)
] 𝑢& |9𝝁|	𝑢*  = &

)
∑*

+)%+%)
ℏ

[ -.+,-.

($%)"$)
+ -./,-.

($%)1$)
] 

𝑝(=) 	= ∑:
|P+2|%

$ℏ [ =
(.2++.)

+ =
(.2+O.)

]𝐸𝑒+,.% +	𝑐. 𝑐. Thus This is an electric dipole moment of a single 
atom induced by the field E at frequency 𝜔   

this is the linear (1st -order) susceptibility

The linear polarization (dipole moment per unit volume) is:  𝑃(=) = 𝑁𝑝(=)   
and since 𝑃(=) = 𝜖A𝜒(=)𝐸, and	𝐸 =

=
$
𝐸𝑒+,.% + 𝑐. 𝑐. , we	get ∶  

(N is the density of atoms)

𝜒(A) =
𝑁
𝜖#ℏ

;
/

{
|𝜇A/|.

(𝜔/A−𝜔)
+

|𝜇A/|.

(𝜔/A+𝜔)
} (4.15)

𝜓 &  |9𝝁| 𝜓 ( = &
)
∑*

+%)
ℏ
[ -.+,-.

($%)"$)
+ -.,-.

($%)1$)
]	𝑢* 𝑒"#$)% 	|9𝝁|	𝑢&𝑒"#$)% = &

)
∑*

+)%+%)
ℏ

[ -./,-.

($%)"$)
+ -.+,-.

($%)1$)
] 

see (4.8)

similarly,

And finally:
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1st -order perturbation solution

3

2

1

Let us simplify (4.11) - take a system with just 3 levels (”1” is the ground state) and 
leave only resonant terms  

𝜔
𝜔2&

𝜔)&

𝜒(=) =
𝑁
𝜖Aℏ

g
:

{
|𝜇=:|$

(𝜔:=−𝜔)
+

|𝜇=:|$

(𝜔:=+𝜔)
}

𝑁
𝜖Cℏ

{
|𝜇=$|$

(𝜔$=−𝜔)
+

|𝜇=!|$

(𝜔!=−𝜔)
}

This formula makes sense: 
susceptibility	𝜒,  and refractive index 

𝑛 = 1 + 𝜒 
– 	grow	with	frequency	between	the	two	poles	

𝜔𝜔$= 𝜔!=

𝜒

(m=2,3)
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1st -order QM perturbation solution: compare to classical model

𝜒(=) =
𝑁𝑞$/𝑚

𝜖A(𝜔A$ − 𝜔$ + 𝑖𝜔𝛾)
see (3.3d)

compare to classical 
osillator model from L3

(4.16)

𝜒(=) =
𝑁
𝜖Cℏ

|𝜇=!|$

(𝜔!=−𝜔)
assume that the dominant 
is only one transition 1-3

𝜔
𝜔2&

𝜔)&(4.16a)

𝜒(=) ≈
𝑁𝑒$

2𝑚𝜖A𝜔A(𝜔A − 𝜔 +
𝑖𝛾
2 )

𝜔'! − 𝜔! + 𝑖𝜔𝛾 = (𝜔' + 𝜔)(𝜔' − 𝜔)+𝑖𝜔𝛾 ≈ 2𝜔'(𝜔' − 𝜔)+ 𝑖𝜔𝛾 ≈ 2𝜔'(𝜔' − 𝜔 +
3=
!
) 𝜔𝜔(

|𝜇=!|$ <->
ℏ𝑒$

2𝑚𝜔A

𝜒(=) =
𝑁
𝜖Aℏ

g
:

{
|𝜇=:|$

(𝜔:=−𝜔)
+

|𝜇=:|$

(𝜔:=+𝜔)
}
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2nd -order nonlinearity 𝜒($)– perturbation 
solution
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2nd -order nonlinearity
Now, calculate the 2nd -order correction – nonlinear polarization P (2) 

𝐸 𝑡 = =
$𝐸𝑒

+,.% + =
$𝐸𝑒

O,.%Optical input field

The 2nd-order contribution to the induced dipole moment per atom is :

< 𝑝($) >	=	< 𝜓 A + 𝜓 = + 𝜓 $  |a𝝁| 𝜓 A + 𝜓 = + 𝜓 $  > 

since only this combination gives polarization proportional to E2

we have from previous:
𝜓(A) 𝑟, 𝑡 = 𝑢= 𝑟 𝑒+,-+%/ℏ = 𝑢=𝑒+,.+%,   

𝜓(=) 𝑟, 𝑡 = =
$ℏ
∑: { P2+-

(.2++.)
𝑒+,.%+ P2+-

(.2+O.)
𝑒,.%}	 𝑢: 𝑟

𝜓($) 𝑟, 𝑡 =	 ?

Need to find 𝜓(!)  via known 𝜓(6)
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2nd -order nonlinearity

𝑎̇!
. 𝑡 = 𝑖ℏ "A 	;

/
𝑎/
A 𝑉!/𝑒#('+% =

From (4.9-4.10)

𝑎)
6 =

1
2ℏ

𝜇)6𝐸
(𝜔)6−𝜔)

𝑒3(4%)74)5 +
𝜇)6𝐸

(𝜔)6+𝜔)
𝑒3(4%):4)5 =

1
2ℏg

>

𝜇)6𝐸
(𝜔)6−𝜔>)

𝑒3(4%)740)5

𝜔1	 𝑟𝑢𝑛𝑠	𝑡ℎ𝑟𝑜𝑢𝑔ℎ	 + 𝜔	𝑜𝑟	 − 𝜔

= 𝑖ℏ += 	g
:

1
4ℏg

R

𝜇:=𝐸
(𝜔:=−𝜔R)

𝑒,(.2++.?)%g
S

(−𝜇/:)𝐸𝑒,(.&2+.@)% =

𝑉*) = (−𝜇*))𝐸 𝑡 =
1
2g

A

(−𝜇*))𝐸𝑒3(4"%742)5

𝜓($) 𝑟, 𝑡 =g
/

𝑎/
$ (𝑡)	𝑢/ 𝑟 𝑒+,.&%

=
𝑖
4ℏ$ g

:,T,S

𝜇/:𝜇:=𝐸$

(𝜔:=−𝜔R)
𝑒,(.&++.?+.@)% =

𝑎$
% (𝑡) =∫&'

( 𝑎̇$
% 𝑡′ 𝑑𝑡′ = )

*ℏU
∑!,-,. 	

/VW/WX0U

(2VX&2Y&2Z)(2WX&2[)
𝑒)(2VX&2Y&2Z)( (4.17)
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2nd -order nonlinearity

Finally,

< 𝑝($) >	=...

< 𝑢= 𝑒+,.+%|𝜇|
=
\ℏ%

∑:,/,S,T
P&2P2+- .? - .@

(.&++.?+.@)(.2++.?)
𝑢/𝑒+,(.+O.?O.@)% > = =

\ℏ%
∑:,/,S,T

P+&P&2P2+-(.?)- .@
(.&++.?+.@)(.2++.?)

𝑒+,(.?O.@)%

< =
$ℏ
∑:,T𝐸(𝜔T)

P2+
(.2++.?)

𝑢:𝑒+,(.+O.?)%	|𝜇|
=
$ℏ
∑:,T𝐸(𝜔T)

P2+
(.2++.?)

𝑢:𝑒+,(.+O.?)%>= =
\ℏ%

∑:,/,S,T
P+&P&2P2+-(.?)- .@
(.&++.@)(.2++.?)

𝑒+,(.?+.@)% 

𝑖𝑡𝑠	𝑐𝑜𝑚𝑝𝑙𝑒𝑥	𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒+ = =
\ℏ%

∑:,/,S,T
P+&P&2P2+-(.?)- .@
(.&++.?+.@)(.2++.?)

𝑒,(.?O.@)%

< 𝑝($) >	= =
\ℏ%

∑:,/,S,T{
P+&P&2P2+-(.?)- .@
(.&++.?+.@)(.2++.?)

𝑒+,(.?O.@)% + P+&P&2P2+-(.?)- .@
(.&++.?+.@)(.2++.?)

𝑒,(.?O.@)% + P+&P&2P2+-(.?)- .@
(.&++.@)(.2++.?)

𝑒+,(.?+.@)%

(4.18)
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2nd -order nonlinearity – perturbation solution

Finally, the 2nd-order contribution to the induced dipole moment per unit volume:

𝑃(.) = 𝑁𝑝(.)

𝜒(%) = 4
5]ℏU

∑!,$,.,- 	{
/XV/VW/WX

(2VX&2Y&2Z)(2WX&2Y)
+ /XV/VW/WX
(2WX62Y62Z)(2VX62Z)

+ /XV/VW/WX
(2VX62Z)(2WX&2Y)

}	

The nonlinear succeptibility is  :

( see Stegeman or Boyd for details)

(4.19)

𝑂𝑛𝑒	𝑓𝑖𝑒𝑙𝑑:	 𝜔" and	𝜔# run through  ±𝜔 Even for a 3-level system, there are 2x2x4x4=64 elements in this sum ! 

3

2

1
𝜔𝑝

𝜔𝑞

𝜔2&

𝜔)&

=
𝑁
𝜖'ℏ!

{
𝜇61𝜇1!𝜇!6

(𝜔16−𝜔> − 𝜔A)(𝜔!6 − 𝜔>)
+

𝜇61𝜇1!𝜇!6
(𝜔16−𝜔> − 𝜔A)(𝜔!6 − 𝜔A)

+
𝜇61𝜇1!𝜇!6

(𝜔16−𝜔A)(𝜔!6 − 𝜔>)

+
𝜇6!𝜇!1𝜇16

(𝜔!6−𝜔> − 𝜔A)(𝜔16 − 𝜔>)
+

𝜇6!𝜇!1𝜇16
(𝜔!6−𝜔> − 𝜔A)(𝜔16 − 𝜔A)

+
𝜇6!𝜇!1𝜇16

(𝜔!6−𝜔A)(𝜔16 − 𝜔>)

+
𝜇61𝜇1!𝜇!6

(𝜔16+𝜔> − 𝜔A)(𝜔!6 − 𝜔>)
+

𝜇61𝜇1!𝜇!6
(𝜔16−𝜔> − 𝜔A)(𝜔!6 + 𝜔A)

+
𝜇61𝜇1!𝜇!6

(𝜔16−𝜔A)(𝜔!6 + 𝜔>)

+
𝜇61𝜇1!𝜇!6

(𝜔16+𝜔> + 𝜔A)(𝜔!6 − 𝜔>)
+

𝜇61𝜇1!𝜇!6
(𝜔16+𝜔> + 𝜔A)(𝜔!6 − 𝜔A)

+
𝜇61𝜇1!𝜇!6

(𝜔16+𝜔A)(𝜔!6 + 𝜔>)

+	…………………………………………………………………………………… .
+	…………………………………………………………………………………… . }

(4.20)

𝜒(!) =
2
𝜖'
𝑃(!)(2𝜔 )
𝐸(𝜔)! 

N - number density of electrons 𝜒(") definition (will discuss it later in the couse)

𝑇𝑤𝑜	𝑓𝑖𝑒𝑙𝑑𝑠: 	𝜔" and	𝜔# run through  ±𝜔"; 	±𝜔# 	
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2nd -order perturbation solution 

3

2

1

𝜔2&

𝜔)& 𝜔𝑝

𝜔2)
𝜔𝑞

𝜔𝑝 + 𝜔𝑞

Let us now select only resonant terms in (4.13a) 

𝜒(%)  -->    4
5]ℏU

	{ /X_/_U/UX
(2_X&2Y&2Z)(2UX&2Y)

	+ /X_/_U/UX
(2_X&2Y&2Z)(2UX&2Z)

	+	… . . }

Strictly speaking, transition frequencies 𝜔$= , 𝜔!= need to be complex quantities 𝜔 → 𝜔+𝑖𝛾, 
to incorporate damping phenomena into the theory. This allows to avoid infinities at exact resonances. 

double resonance: at 𝜔6' and 𝜔7' 

𝑇𝑤𝑜	𝑓𝑖𝑒𝑙𝑑𝑠: 	𝜔8 and	𝜔9 run through  ±𝜔8; 	±𝜔9	
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3nd -order nonlinearity – perturbation solution

The QM microscopic 
expression for 3rd order 
nonlinear succeptibility 𝜒(7) 
looks similar, but even more 
scary (3 denominators).  

from Boyd’s book
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Model system for optical 𝜒(:) nonlinearities: semiconductor quantum well 

E3

E2

E1

infinite-barrier quantum well (QW)

𝜒(%)  -->    4
5]ℏU

	{ /XU/U_/_X
(2_X&2Y&2Z)(2UX&2Y)

	+ /XU/U_/_X
(2_X&2Y&2Z)(2UX&2Z)

	+			...			}

Symmetric semiconductor quantum well

From previous page: 

z à
L

z=0

Note that in a symmetric quantum well
𝜇=$≠0, 𝜇$!≠0, but 𝜇!= =0. 

 𝜇!==−𝑒 ∫𝑢!∗ 	𝑧	𝑢=𝑑𝑧      =0;

 Hence 𝜇=!𝜇!$𝜇$==0

This is quite clear, because there should be 
some asymmetry to achieve 𝝌(𝟐)  

even functioneven function
odd function

~ 5-10 nm

𝜔3, 𝜔3 - two pump freqencies
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2nd -order nonlinearity – perturbation solution

(𝜓= + 𝜓$)2

(𝜓$ + 𝜓!)2

(𝜓= + 𝜓!)2

𝜓=

𝜓$

𝜓!
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Model system for optical nonlinearities: semiconductor quantum well 

Asymmetric quantum well : now all  𝜇=$≠0, 𝜇=!≠0, and 𝜇!= ≠0. 

3

2

1

Morover, SHG (𝜔 + 𝜔 = 2𝜔) with double resonance : 𝜔~𝐸12, 2𝜔~𝐸13    


