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Wave-equation description of nonlinear optical 

interactions; coupled-wave equations; solutions of the 

three-wave coupled equations.  

Lecture 5
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Time-varying polarization as a source in the wave equation 

Linear optics

The formal definition of the nonlinear polarization:

𝜒(") = 𝑛$ − 1

(5.1)

𝑃 𝑡 = 𝜀!𝜒(#)𝐸 𝑡

𝑃 𝑡 = 𝜀!{	𝜒(#)𝐸 𝑡 + 𝜒 % 𝐸%(𝑡) + 𝜒 & 𝐸&(𝑡) + ⋯}

= 𝑃(#) 𝑡 + 𝑃(%) 𝑡 +	𝑃(&) 𝑡 + ⋯
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Nonlinear generation of new frequency components
Assume the optical field incident upon a second-order nonlinear optical 𝜒(") medium consists of two distinct frequency 
components:

𝐸 𝑡 = 𝐸!cos 𝜔!𝑡 +𝐸"cos 𝜔"𝑡 = 𝑅𝑒𝑎𝑙	{𝐸!𝑒#$!% + 𝐸"𝑒#$"%}

From (5.1), the second-order contribution to the nonlinear polarization is of the form

𝑃 " 𝑡 = 𝜀&𝜒 " 𝐸(𝑡)"

We find that the nonlinear polarization is:

Since this is a nonlinear relation, the optical field should be written in the real form: 

𝐸 𝑡 =
1
2 (𝐸!𝑒

#$!% + 𝐸"𝑒#$"% + 𝐸!∗𝑒(#$!% + 𝐸"∗𝑒(#$"%) =
1
2𝐸!𝑒

#$!% +
1
2𝐸"𝑒

#$"% + 𝑐. 𝑐.

𝑃 " 𝑡 = 𝜀&𝜒 " !
)
(𝐸!𝑒#$!% + 𝐸"𝑒#$"% + 𝐸!∗𝑒(#$!% + 𝐸"∗𝑒(#$"%)"=

= 𝜀&𝜒 " !
) [𝐸!

"𝑒"#$!% +	𝐸""𝑒"#$"% + 2𝐸!𝐸"𝑒#($!+$")% + 2𝐸!𝐸"∗𝑒#($!($")% + 𝑐. 𝑐. ] + 𝜀&𝜒 " !
"  (𝐸!𝐸!∗ +𝐸" 𝐸"∗)

SHG, second harmonic generation

DFG, difference-frequency generation

SFG, sum-frequency generation

OR, optical rectification

note that the whole expression is real ! 

amplitudes of the frequency components at 𝜔! and  𝜔" 
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Generation of new frequency components

In the complex representation  𝐴	𝑐𝑜𝑠 𝜔𝑡 → 	 𝐴𝑒$%&   , the amplitudes of various frequency components of the nonlinear 
polarization are given by:

𝑎𝑡	2𝜔': 	 𝑃 𝑡 =
1
4 𝜀(𝜒

" 𝐸'"𝑒"$%!& + 𝑐. 𝑐. =
1
2 {
1
2 𝜀(𝜒

"  𝐸'"𝑒"$%!& + 𝑐. 𝑐. } =
1
2 {𝑃 2𝜔' 𝑒"$%!& + 𝑐. 𝑐. }

𝑃 2𝜔' =
1
2 𝜀(𝜒

" 𝐸'" amplitude of polarization at 2𝜔'; can	also	write: 	𝑃"%! 𝑡 = 𝑃 2𝜔' cos(2𝜔'𝑡)	

𝑎𝑡	2𝜔": 	 𝑃 𝑡 =
1
4 𝜀(𝜒

" 𝐸""𝑒"$%"& + 𝑐. 𝑐. =
1
2 {
1
2 𝜀(𝜒

"  𝐸""𝑒"$%"& + 𝑐. 𝑐. } =
1
2 {𝑃 2𝜔" 𝑒"$%"& + 𝑐. 𝑐. }

𝑃 2𝜔" =
1
2 𝜀(𝜒

" 𝐸"" amplitude of polarization at 2𝜔"; can	also	write: 	𝑃"%" 𝑡 = 𝑃 2𝜔" cos(2𝜔"𝑡)	
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Generation of new frequency components

In the complex representation  𝐴	𝑐𝑜𝑠 𝜔𝑡 → 	 𝐴𝑒$%&   , the amplitudes of various frequency components of the nonlinear 
polarization are given by:

𝑃 2𝜔' =
1
2 𝜀(𝜒

" 𝐸'"
polarization amplitude for...
SHG, second harmonic generation

𝑃 2𝜔" =
1
2
𝜀(𝜒 " 𝐸"" SHG, second harmonic generation

𝑃 𝜔' + 𝜔" = 𝜀(𝜒 " 𝐸'𝐸" SFG, sum-frequency generation

𝑃 𝜔' − 𝜔" = 𝜀(𝜒 " 𝐸'𝐸"∗ DFG, difference-frequency generation

𝑃 0 =
1
2 𝜀(𝜒

" (𝐸'𝐸'∗ +𝐸" 𝐸"∗) =
1
2 𝜀(𝜒

" ( 𝐸' " + 𝐸" ") OR, optical rectification

(5.2)
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Generation of new frequency components

Do without complex representation, simply 𝐸' 𝑡 = 𝐸'𝑐𝑜𝑠 𝜔𝑡    

𝑃 " 𝑡 = 𝜀(𝜒 " 𝐸'" 𝑡 = 𝜀(𝜒 " 𝐸'"𝑐𝑜𝑠" 𝜔𝑡 = 𝜀(𝜒 " 𝐸'"
'
" [1 + 𝑐𝑜𝑠 2𝜔𝑡 ]

𝑃 2𝜔' =
1
2 𝜀(𝜒

" 𝐸'"

𝑃 𝐷𝐶 =
1
2 𝜀(𝜒

" 𝐸'"

amplitude of the frequency component at 2𝜔# 

DC polarization
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Second Harmonic Generation

𝑃 2𝜔! =
1
2 𝜀"𝜒

# 𝐸!#

𝑑$% =
1
2𝜒

#

à 𝑃 2𝜔! = 𝜀"𝑑$%𝐸!#

𝑃 2𝜔# = 𝜀"𝑑$%𝐸##
in the same way

!
"	 factor 

– a sequence of historical convention

Amplitude

amplitude of the frequency component at 2𝜔! 
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Generation of new frequency components

In the complex representation  𝐴	𝑐𝑜𝑠 𝜔𝑡 → 	 𝐴𝑒$%&   , the amplitudes of various frequency components of the nonlinear 
polarization are given by:

𝑃 2𝜔' = 𝜀(𝑑*+𝐸'" SHG, second harmonic generation

𝑃 2𝜔" = 𝜀(𝑑*+𝐸"" SHG, second harmonic generation

𝑃 𝜔' + 𝜔" = 2𝜀(𝑑*+𝐸'𝐸" SFG, sum-frequency generation

𝑃 𝜔' − 𝜔" = 2𝜀(𝑑*+𝐸'𝐸"∗ DFG, difference-frequency generation

𝑃 0 = 𝜀(𝑑*+( 𝐸' " + 𝐸" ") OR, optical rectification

(5.2a)
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Coupled -wave theory

Recall slowly varying envelope 
approximation (SVEA) 
equation (2.3)  from lecture 2 

perturbation polarization

>?(@)
>@ 	=− ABC

%D  𝜇!𝑃EFG=−
AB

%DCH#
 𝑃EFG

Now the role of perturbation polarization 𝑃-.% is played by the nonlinear polarization 𝑃𝑁𝐿 
 

Assume we have 3 interacting waves 

𝑃 𝜔! = 2𝜀"𝑑	𝐸&𝐸#∗For nonlinear polarizations
We can write, see (5.2a): ℎ𝑒𝑟𝑒	 𝑑 ≡ 𝑑$%𝑃 𝜔# = 2𝜀"𝑑	𝐸&𝐸!∗

𝑃 𝜔& = 2𝜀"𝑑	𝐸!𝐸#

(5.3)

𝐸!𝑒().*, 	 𝐸#𝑒()/*  , 𝐸&𝑒()0* such that 𝜔' + 𝜔" = 𝜔1

(plane waves)

𝜔' = 𝜔1 − 𝜔"
𝜔" = 𝜔1 − 𝜔'
𝜔1 = 𝜔' + 𝜔"

DFG
DFG
SFG

(2.11)
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Coupled -wave theory

From (2.11) and (5.3) it follows that: /0!
/1 	=−

#$!/
2!3

 𝐸4𝐸"∗

/0"
/1
	=− #$"/

2"3
 𝐸4𝐸!∗

/0%
/1
	=− #$%/

2%3
 𝐸!	𝐸"

The three waves are travelling waves 𝐸' →	𝐸'(𝑧)𝑒$(%!&23!4), 	 𝐸" →	𝐸"(𝑧)𝑒$(%"&23"4)  , 𝐸1 →	𝐸1(𝑧)𝑒$(%&&23&4)

(5.4a)

(5.4b)

(5.4c)

Assume that there is no absorption in the material

Take for example (5.4c)

linear diff. equations, 
hence we are using 
the complex form  

While the phase of  𝐸1 is changing as 𝜔1𝑡 − 𝑘1𝑧  

The phase of the righ side (~ 𝐸'𝐸") is changing as	(𝜔'+𝜔")𝑡 − (𝑘'+𝑘")𝑧 = 𝜔1𝑡 − (𝑘'+𝑘")𝑧

𝜔1 = 𝜔' + 𝜔",Despite of the fact that 

𝑘1 	− 𝑘" − 𝑘' = Δ𝑘 ≠ 0 phase mismatch because of wave dispersion

𝑘1 ≠ 𝑘' + 𝑘"

𝑝ℎ𝑎𝑠𝑒	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝜔1
𝑘1

≠
𝜔' + 𝜔"
𝑘' + 𝑘"

Three waves have different phase velocities. As a result, the induced polarization at 𝜔' moves at a different velocity than the field at 𝜔'   

We will look at this so-called ‘phase matching’ problem in Lecture 8
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Coupled -wave theory

As a result of this mismatch of the sum of k−vectors, the term  𝑒(∆,-  should be added to (5.4):

./.
.- 	=−

()..
0.1

 𝐸&𝐸#∗𝑒2(∆,-

.//
.- 	=−

()/.
0/1

 𝐸&𝐸!∗𝑒2(∆,-

./0
.- 	=−

()0.
001

 𝐸!𝐸#𝑒(∆,-

𝑑 ≡ 𝑑$% = 𝜒())/2(5.5)

Δ𝑘 = 𝑘4 	− 𝑘" − 𝑘! Δ𝑘	> 0 for normal-dispersion material
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Coupled -wave theory

𝐼 =
1
2 (𝑐/𝑛)𝜀 𝐸

" =
1
2 𝑐𝑛𝜀& 𝐸

" = 𝐸 "	/2η	Energy flux
(intensity):

from Lecture 2:

3
ℏ) =

1550 / /

#ℏ)  =	 (155#ℏ )
0 / /

)   ~ 0
) 𝐸 # Photon flux: 

introduce a new field variable : 𝐴 =
𝑛
𝜔𝐸

such that 𝐴 " is now proportional to the photon flux:      Φ = 35&
"ℏ

𝐴 "

𝐼 =
1
2 𝑐𝑛𝜀& 𝐸

" =
1
2 𝑐𝑛𝜀&(

𝜔
𝑛) 𝐴

"=
𝑐𝜀&
2 𝜔 𝐴 "	 ~ 𝜔 𝐴 "Intensity:

Watts per m2

photons per m2  per second 

-photons per m2 per sec

(5.6)

(5.7)
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Coupled -wave theory

Now rewrite (5.5): ).
0.

.6.
.- 	=−

()..
0.1

)0
00

)/
0/
	𝐴&𝐴#∗𝑒2(∆,-

)/
0/

.6/
.- 	=−

()/.
0/1

)0
00

).
0.
	𝐴&𝐴!∗𝑒2(∆,-

)0
00

.60
.- 	=−

()0.
001

).
0.

)/
0/
	𝐴!𝐴#𝑒(∆,-

𝐸 →
𝜔
𝑛 𝐴

and get: 
.6.
.- 	=−𝑖

.
1

).)/)0
0.0/00

	𝐴&𝐴#∗𝑒2(∆,-

.6/
.- 	=−𝑖

.
1

).)/)0
0.0/00

	𝐴&𝐴!∗𝑒2(∆,-

.60
.- 	=−𝑖

.
1

).)/)0
0.0/00

𝐴!𝐴#𝑒(∆,-

(5.8)
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Coupled-wave theory

(5.9)

Define : g = 6
7

%!%"%&
8!8"8&

 

.6.
.- 	=−𝑖𝑔	𝐴&𝐴#

∗𝑒2(∆,-

.6/
.- 	=−𝑖𝑔	𝐴&𝐴!

∗𝑒2(∆,-

.60
.- 	=−𝑖𝑔𝐴!𝐴#𝑒

(∆,-

This is the final form of coupled equations for 3 waves 

g	 - NL coupling coefficient
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Coupled -wave theory

From the previous Eq. (5.7)

Now let us find how photon fluxes at 𝜔' 𝜔" 𝜔1 are related to each other  

photon flux ~	|𝐴|" 6
64 	 |𝐴|

" = 6
64 𝐴𝐴∗ = 𝐴∗ 6964 + 𝐴

69∗

64 = 𝐴∗ 6964 +	𝑐. 𝑐.

.6.
.- 	=−𝑖𝑔	𝐴&𝐴#

∗𝑒2(∆,-

.6/
.- 	=−𝑖𝑔	𝐴&𝐴!

∗𝑒2(∆,-

.60
.- 	=−𝑖𝑔𝐴!𝐴#𝑒

(∆,-

𝐴'∗

𝐴"∗

𝐴1∗

6
64
	 |𝐴'|" = −𝑖𝑔	𝐴1𝐴"∗𝐴'∗𝑒2$∆34 + 𝑐. 𝑐.

6
64 	 |𝐴"|

" = −𝑖𝑔	𝐴1𝐴"∗𝐴'∗𝑒2$∆34 + 𝑐. 𝑐.

6
64 	 |𝐴1|

" = −𝑖𝑔𝐴1∗𝐴"𝐴'𝑒$∆34 + 𝑐. 𝑐. = 𝑖𝑔	𝐴1𝐴"∗𝐴'∗𝑒2$∆34 + 𝑐. 𝑐.
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Manley–Rowe relation

𝑑
𝑑𝑧	|𝐴!|

# =
𝑑
𝑑𝑧	|𝐴#|

# = −
𝑑
𝑑𝑧	|𝐴&|

#hence Manley–Rowe relation

𝑑
𝑑𝑧 𝑛! =

𝑑
𝑑𝑧 𝑛# = −

𝑑
𝑑𝑧 𝑛&

same as 

since |𝐴|) ~
3
) 

Also, using (5.10)  𝑑
𝑑𝑧 𝐼! + 𝐼" + 𝐼4 = −

𝜔!
𝜔4

𝑑
𝑑𝑧	𝐼4 −

𝜔"
𝜔4

𝑑
𝑑𝑧	𝐼4 +

𝑑
𝑑𝑧	𝐼4 = −

𝜔! + 𝜔"
𝜔4

𝑑
𝑑𝑧	𝐼4 +

𝑑
𝑑𝑧	𝐼4 = 0and  𝜔'+𝜔"=𝜔1 

𝑑
𝑑𝑧 𝐼! + 𝐼# + 𝐼& = 0 energy conservation

(5.8)

(5.9)

(5.10)

(5.11)

n - number of photons
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Manley–Rowe relation

These important relations (5.8- 5.11) are universal in the sense that there 
may be or may be no phase matching; and also in the sense that the 
process can go both ways:

𝜔: +𝜔; 	→ 𝜔<	

or

𝜔< → 𝜔: +𝜔;	

Of course this is under the assumption that there is no absorption in the material


