Lecture 5

Wave-equation description of nonlinear optical interactions; coupled-wave equations; solutions of the three-wave coupled equations.

Time-varying polarization as a source in the wave equation

Linear optics

$$
P(t)=\varepsilon_{0} \chi^{(1)} E(t) \quad \chi^{(1)}=n^{2}-1
$$

The formal definition of the nonlinear polarization:

$$
\begin{gather*}
P(t)=\varepsilon_{0}\left\{\chi^{(1)} E(t)+\chi^{(2)} E^{2}(t)+\chi^{(3)} E^{3}(t)+\cdots\right\} \\
=P^{(1)}(t)+P^{(2)}(t)+P^{(3)}(t)+\cdots \tag{5.1}
\end{gather*}
$$

Nonlinear generation of new frequency components

Assume the optical field incident upon a second-order nonlinear optical $\chi^{(2)}$ medium consists of two distinct frequency components:

$$
E(t)=E_{1} \cos \left(\omega_{1} t\right)+E_{2} \cos \left(\omega_{2} t\right)=\operatorname{Real}\left\{E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}\right\}
$$

From (5.1), the second-order contribution to the nonlinear polarization is of the form

$$
P^{(2)}(t)=\varepsilon_{0} \chi^{(2)} E(t)^{2}
$$

Since this is a nonlinear relation, the optical field should be written in the real form:

$$
E(t)=\frac{1}{2}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}+E_{1}^{*} e^{-i \omega_{1} t}+E_{2}^{*} e^{-i \omega_{2} t}\right)=\frac{1}{2} E_{1} e^{i \omega_{1} t}+\frac{1}{2} E_{2} e^{i \omega_{2} t}+c . c .
$$

We find that the nonlinear polarization is:

$$
\begin{aligned}
& P^{(2)}(t)=\varepsilon_{0} \chi^{(2)} \frac{1}{4}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}+E_{1}^{*} e^{-i \omega_{1} t}+E_{2}^{*} e^{-i \omega_{2} t}\right)^{2}= \\
& =\varepsilon_{0} \chi^{(2)} \frac{1}{4}\left[E_{1}^{2} e^{2 i \omega_{1} t}+E_{2}^{2} e^{2 i \omega_{2} t}+2 E_{1} E_{2} e^{i\left(\omega_{1}+\omega_{2}\right) t}+2 E_{1} E_{2}^{*} e^{i\left(\omega_{1}-\omega_{2}\right) t}+c . c .\right]+\varepsilon_{0} \chi^{(2)} \frac{1}{2}\left(E_{1} E_{1}^{*}+E_{2} E_{2}^{*}\right)
\end{aligned}
$$

Generation of new frequency components

In the complex representation $A \cos (\omega t) \rightarrow A e^{i \omega t}$, the amplitudes of various frequency components of the nonlinear polarization are given by:
at $2 \omega_{1}: \quad P(t)=\frac{1}{4} \varepsilon_{0} \chi^{(2)} E_{1}^{2} e^{2 i \omega_{1} t}+c . c .=\frac{1}{2}\left\{\frac{1}{2} \varepsilon_{0} \chi^{(2)} E_{1}^{2} e^{2 i \omega_{1} t}+c . c.\right\}=\frac{1}{2}\left\{P\left(2 \omega_{1}\right) e^{2 i \omega_{1} t}+c . c.\right\}$
$P\left(2 \omega_{1}\right)=\frac{1}{2} \varepsilon_{0} \chi^{(2)} E_{1}^{2} \quad \quad \underline{\text { amplitude }}$ of polarization at $2 \omega_{1}$; can also write: $P_{2 \omega_{1}}(t)=P\left(2 \omega_{1}\right) \cos \left(2 \omega_{1} t\right)$

$$
\begin{aligned}
& \text { at } 2 \omega_{2}: \quad P(t)=\frac{1}{4} \varepsilon_{0} \chi^{(2)} E_{2}^{2} e^{2 i \omega_{2} t}+c . c .=\frac{1}{2}\left\{\frac{1}{2} \varepsilon_{0} \chi^{(2)} E_{2}^{2} e^{2 i \omega_{2} t}+c . c .\right\}=\frac{1}{2}\left\{P\left(2 \omega_{2}\right) e^{2 i \omega_{2} t}+c . c .\right\} \\
& P\left(2 \omega_{2}\right)=\frac{1}{2} \varepsilon_{0} \chi^{(2)} E_{2}^{2} \quad \underline{\text { amplitude of polarization at } 2 \omega_{2} ; \text { can also write: } P_{2 \omega_{2}}(t)=P\left(2 \omega_{2}\right) \cos \left(2 \omega_{2} t\right)}
\end{aligned}
$$

Generation of new frequency components

In the complex representation $A \cos (\omega t) \rightarrow A e^{i \omega t}$, the amplitudes of various frequency components of the nonlinear polarization are given by:

$$
\begin{aligned}
& P\left(2 \omega_{1}\right)=\frac{1}{2} \varepsilon_{0} \chi^{(2)} E_{1}^{2} \\
& P\left(2 \omega_{2}\right)=\frac{1}{2} \varepsilon_{0} \chi^{(2)} E_{2}^{2} \\
& P\left(\omega_{1}+\omega_{2}\right)=\varepsilon_{0} \chi^{(2)} E_{1} E_{2} \\
& P\left(\omega_{1}-\omega_{2}\right)=\varepsilon_{0} \chi^{(2)} E_{1} E_{2}^{*} \\
& P(0)=\frac{1}{2} \varepsilon_{0} \chi^{(2)}\left(E_{1} E_{1}^{*}+E_{2} E_{2}^{*}\right)=\frac{1}{2} \varepsilon_{0} \chi^{(2)}\left(\left|E_{1}\right|^{2}+\left|E_{2}\right|^{2}\right)
\end{aligned}
$$

polarization amplitude for...
SHG, second harmonic generation

SHG, second harmonic generation

SFG, sum-frequency generation

DFG, difference-frequency generation

OR, optical rectification

Generation of new frequency components

Do without complex representation, simply $E_{1}(t)=E_{1} \cos (\omega t)$

$$
\begin{aligned}
& P^{(2)}(t)=\varepsilon_{0} \chi^{(2)} E_{1}^{2}(t)=\varepsilon_{0} \chi^{(2)} E_{1}{ }^{2} \cos ^{2}(\omega t)=\varepsilon_{0} \chi^{(2)} E_{1}^{2} \frac{1}{2}[1+\cos (2 \omega t)] \\
& P\left(2 \omega_{1}\right)=\frac{1}{2} \varepsilon_{0} \chi^{(2)} E_{1}^{2} \\
& P(D C)=\frac{1}{2} \varepsilon_{0} \chi^{(2)} E_{1}^{2} \\
& \text { amplitude of the frequency component at } 2 \omega_{1}
\end{aligned}
$$

Second Harmonic Generation

Generation of new frequency components

In the complex representation $A \cos (\omega t) \rightarrow A e^{i \omega t}$, the amplitudes of various frequency components of the nonlinear polarization are given by:

$$
\begin{array}{ll}
P\left(2 \omega_{1}\right)=\varepsilon_{0} d_{N L} E_{1}^{2} & \text { SHG, second harmonic generation } \\
P\left(2 \omega_{2}\right)=\varepsilon_{0} d_{N L} E_{2}^{2} & \text { SHG, second harmonic generation } \\
P\left(\omega_{1}+\omega_{2}\right)=2 \varepsilon_{0} d_{N L} E_{1} E_{2} & \text { SFG, sum-frequency generation } \\
P\left(\omega_{1}-\omega_{2}\right)=2 \varepsilon_{0} d_{N L} E_{1} E_{2}^{*} & \text { DFG, difference-frequency generation } \\
P(0)=\varepsilon_{0} d_{N L}\left(\left|E_{1}\right|^{2}+\left|E_{2}\right|^{2}\right) & \text { OR, optical rectification }
\end{array}
$$

Recall slowly varying envelope approximation (SVEA)
equation (2.3) from lecture 2

$$
\begin{equation*}
\frac{\partial E(z)}{\partial z}=-\frac{i \omega c}{2 n} \mu_{0} P_{e x t}=-\frac{i \omega}{2 n c \varepsilon_{0}} P_{e x t} \tag{2.11}
\end{equation*}
$$

perturbation polarization

Now the role of perturbation polarization $P_{\text {ext }}$ is played by the nonlinear polarization $P_{N L}$

Assume we have 3 interacting waves $E_{1} e^{i \omega_{1} t}, E_{2} e^{i \omega_{2} t}, E_{3} e^{i \omega_{3} t} \quad$ such that $\omega_{1}+\omega_{2}=\omega_{3}$

$$
\begin{array}{ll}
\text { DFG } & \omega_{1}=\omega_{3}-\omega_{2} \\
\text { DFG } & \omega_{2}=\omega_{3}-\omega_{1} \\
\text { SFG } & \omega_{3}=\omega_{1}+\omega_{2}
\end{array}
$$

For nonlinear polarizations We can write, see (5.2a):

$$
\begin{align*}
& P\left(\omega_{1}\right)=2 \varepsilon_{0} d E_{3} E_{2}^{*} \\
& P\left(\omega_{2}\right)=2 \varepsilon_{0} d E_{3} E_{1}^{*} \tag{5.3}\\
& P\left(\omega_{3}\right)=2 \varepsilon_{0} d E_{1} E_{2}
\end{align*}
$$

$$
\text { here } d \equiv d_{N L}
$$

Coupled -wave theory

Assume that there is no absorption in the material
From (2.11) and (5.3) it follows that:

$$
\begin{array}{llll}
\frac{d E_{1}}{d z}=-\frac{i \omega_{1} d}{n_{1} c} & E_{3} E_{2}^{*} & (5.4 \mathrm{a}) & \text { linear diff. equations, } \\
\frac{d E_{2}}{d z}=-\frac{i \omega_{2} d}{n_{2} c} & E_{3} E_{1}^{*} & (5.4 \mathrm{~b}) & \text { hence we are using } \tag{5.4b}\\
\frac{d E_{3}}{d z}=-\frac{i \omega_{3} d}{n_{3} c} & E_{1} E_{2} & (5.4 \mathrm{c}) & \text { the complex form }
\end{array}
$$

The three waves are travelling waves

$$
E_{1} \rightarrow E_{1}(z) e^{i\left(\omega_{1} t-k_{1} z\right)}, \quad E_{2} \rightarrow E_{2}(z) e^{i\left(\omega_{2} t-k_{2} z\right)}, E_{3} \rightarrow E_{3}(z) e^{i\left(\omega_{3} t-k_{3} z\right)}
$$

Take for example (5.4c) While the phase of E_{3} is changing as $\omega_{3} t-k_{3} z$
The phase of the righ side $\left(\sim E_{1} E_{2}\right)$ is changing as $\left(\omega_{1}+\omega_{2}\right) t-\left(k_{1}+k_{2}\right) z=\omega_{3} t-\left(k_{1}+k_{2}\right) z$
Despite of the fact that

$$
\omega_{3}=\omega_{1}+\omega_{2}, \quad k_{3} \neq k_{1}+k_{2}
$$

$$
k_{3}-k_{2}-k_{1}=\Delta k \neq 0 \quad \text { phase mismatch because of wave dispersion }
$$

Three waves have different phase velocities. As a result, the induced polarization at ω_{3} moves at a different velocity than the field at ω_{3}

$$
\text { phase velocity }=\frac{\omega_{3}}{k_{3}} \neq \frac{\omega_{1}+\omega_{2}}{k_{1}+k_{2}}
$$

We will look at this so-called 'phase matching' problem in Lecture 8

Coupled -wave theory

As a result of this mismatch of the sum of k-vectors, the term $e^{i \Delta k z}$ should be added to (5.4):

$$
\begin{align*}
\Delta k & =k_{3}-k_{2}-k_{1} \quad \Delta k>0 \text { for normal-dispersion material } \\
\frac{d E_{1}}{d z} & =-\frac{i \omega_{1} d}{n_{1} c} \quad E_{3} E_{2}^{*} e^{-i \Delta k z} \\
\frac{d E_{2}}{d z} & =-\frac{i \omega_{2} d}{n_{2} c} \quad E_{3} E_{1}^{*} e^{-i \Delta k z} \tag{5.5}\\
\frac{d E_{3}}{d z} & =-\frac{i \omega_{3} d}{n_{3} c} \quad E_{1} E_{2} e^{i \Delta k z}
\end{align*}
$$

Coupled -wave theory

from Lecture 2:
Energy flux (intensity):

$$
I=\frac{1}{2}(c / n) \varepsilon|E|^{2}=\frac{1}{2} c n \varepsilon_{0}|E|^{2}=|E|^{2} / 2 \eta \quad \text { Watts per } \mathrm{m}^{2}
$$

Photon flux: $\quad \frac{I}{\hbar \omega}=\frac{c \varepsilon_{0} n|E|^{2}}{2 \hbar \omega}=\left(\frac{c \varepsilon_{0}}{2 \hbar}\right) \frac{n|E|^{2}}{\omega} \sim \frac{n}{\omega}|E|^{2}$
photons per m^{2} per second
introduce a new field variable :

$$
\begin{equation*}
A=\sqrt{\frac{n}{\omega}} E \tag{5.7}
\end{equation*}
$$

such that $|A|^{2}$ is now proportional to the photon flux: $\quad \Phi=\frac{c \varepsilon_{0}}{2 \hbar}|A|^{2} \quad$-photons per m^{2} per sec Intensity: $\quad I=\frac{1}{2} \operatorname{cn} \varepsilon_{0}|E|^{2}=\frac{1}{2} \operatorname{cn} \varepsilon_{0}\left(\frac{\omega}{n}\right)|A|^{2}=\frac{c \varepsilon_{0}}{2} \omega|A|^{2} \sim \omega|A|^{2}$

Coupled -wave theory

Now rewrite (5.5): $\quad E \rightarrow \sqrt{\frac{\omega}{n}} A$

$$
\begin{aligned}
& \sqrt{\frac{\omega_{1}}{n_{1}}} \frac{d A_{1}}{d z}=-\frac{i \omega_{1} d}{n_{1} c} \sqrt{\frac{\omega_{3}}{n_{3}}} \sqrt{\frac{\omega_{2}}{n_{2}}} A_{3} A_{2}^{*} e^{-i \Delta k z} \\
& \sqrt{\frac{\omega_{2}}{n_{2}}} \frac{d A_{2}}{d z}=-\frac{i \omega_{2} d}{n_{2} c} \sqrt{\frac{\omega_{3}}{n_{3}}} \sqrt{\frac{\omega_{1}}{n_{1}}} A_{3} A_{1}^{*} e^{-i \Delta k z} \\
& \sqrt{\frac{\omega_{3}}{n_{3}}} \frac{d A_{3}}{d z}=-\frac{i \omega_{3} d}{n_{3} c} \sqrt{\frac{\omega_{1}}{n_{1}}} \sqrt{\frac{\omega_{2}}{n_{2}}} A_{1} A_{2} e^{i \Delta k z}
\end{aligned}
$$

and get:

$$
\begin{align*}
& \frac{d A_{1}}{d z}=-i \frac{d}{c} \sqrt{\frac{\omega_{1} \omega_{2} \omega_{3}}{n_{1} n_{2} n_{3}}} A_{3} A_{2}^{*} e^{-i \Delta k z} \\
& \frac{d A_{2}}{d z}=-i \frac{d}{c} \sqrt{\frac{\omega_{1} \omega_{2} \omega_{3}}{n_{1} n_{2} n_{3}}} A_{3} A_{1}^{*} e^{-i \Delta k z} \tag{5.8}\\
& \frac{d A_{3}}{d z}=-i \frac{d}{c} \sqrt{\frac{\omega_{1} \omega_{2} \omega_{3}}{n_{1} n_{2} n_{3}}} A_{1} A_{2} e^{i \Delta k z}
\end{align*}
$$

Coupled-wave theory

$$
\text { Define : } \mathrm{g}=\frac{d}{c} \sqrt{\frac{\omega_{1} \omega_{2} \omega_{3}}{n_{1} n_{2} n_{3}}} \quad \mathrm{~g}-\mathrm{NL} \text { coupling coefficient }
$$

$$
\begin{align*}
& \frac{d A_{1}}{d z}=-i g A_{3} A_{2}^{*} e^{-i \Delta k z} \\
& \frac{d A_{2}}{d z}=-i g A_{3} A_{1}^{*} e^{-i \Delta k z} \tag{5.9}\\
& \frac{d A_{3}}{d z}=-i g A_{1} A_{2} e^{i \Delta k z}
\end{align*}
$$

This is the final form of coupled equations for 3 waves

Coupled -wave theory

Now let us find how photon fluxes at $\omega_{1} \omega_{2} \omega_{3}$ are related to each other
photon flux $\sim|A|^{2} \quad \frac{d}{d z}|A|^{2}=\frac{d}{d z}\left(A A^{*}\right)=A^{*} \frac{d A}{d z}+A \frac{d A^{*}}{d z}=A^{*} \frac{d A}{d z}+$ c.c.

From the previous Eq. (5.7)

Manley-Rowe relation

hence

$$
\frac{d}{d z}\left|A_{1}\right|^{2}=\frac{d}{d z}\left|A_{2}\right|^{2}=-\frac{d}{d z}\left|A_{3}\right|^{2}
$$

(5.8) Manley-Rowe relation
same as

$$
\begin{equation*}
\frac{d}{d z} n_{1}=\frac{d}{d z} n_{2}=-\frac{d}{d z} n_{3} \tag{5.9}
\end{equation*}
$$

since $|A|^{2} \sim \frac{I}{\omega}$

$$
\begin{equation*}
\frac{d}{d z}\left(\frac{I_{2}}{\omega_{2}}+\frac{I_{3}}{\omega_{3}}\right)=0, \quad \frac{d}{d z}\left(\frac{I_{1}}{\omega_{1}}+\frac{I_{3}}{\omega_{3}}\right)=0, \quad \frac{d}{d z}\left(\frac{I_{1}}{\omega_{1}}-\frac{I_{2}}{\omega_{2}}\right)=0 \tag{5.10}
\end{equation*}
$$

Also, using (5.10) and $\omega_{1}+\omega_{2}=\omega_{3}$

$$
\frac{d}{d z}\left(I_{1}+I_{2}+I_{3}\right)=-\frac{\omega_{1}}{\omega_{3}} \frac{d}{d z} I_{3}-\frac{\omega_{2}}{\omega_{3}} \frac{d}{d z} I_{3}+\frac{d}{d z} I_{3}=-\frac{\omega_{1}+\omega_{2}}{\omega_{3}} \frac{d}{d z} I_{3}+\frac{d}{d z} I_{3}=0
$$

$$
\begin{equation*}
\frac{d}{d z}\left(I_{1}+I_{2}+I_{3}\right)=0 \tag{5.11}
\end{equation*}
$$

Manley-Rowe relation

These important relations (5.8-5.11) are universal in the sense that there may be or may be no phase matching; and also in the sense that the process can go both ways:

$$
\omega_{1}+\omega_{2} \rightarrow \omega_{3}
$$

or

$$
\omega_{3} \rightarrow \omega_{1}+\omega_{2}
$$

Of course this is under the assumption that there is no absorption in the material

