Lecture 5

Wave-equation description of nonlinear optical
interactions; coupled-wave equations; solutions of the

three-wave coupled equations.



Time-varying polarization as a source in the wave equation

Linear optics

P(t) = egxVE(L) @ =n?-1

The formal definition of the nonlinear polarization:

P(t) = eo{ xWE®) + xPE*(t) + Y PE3 () + )
(5.1)
=P () + PA() + PO (t) + ---



Nonlinear generation of new frequency components

Assume the optical field incident upon a second-order nonlinear optical y» medium consists of two distinct frequency
components:

E(t) = Eycos(wyt) +E;cos(w,t) = Real {Eje'®1t + E,e'®2t}
/

amplitudes of the frequency components at w; and w,

From (5.1), the second-order contribution to the nonlinear polarization is of the form
PR () = gox PE(t)?

Since this is a nonlinear relation, the optical field should be written in the real form:

1 iwqt lwyt * ,—lwqt * ,—ilwyt 1 iwqt 1 ilwyt
E(t)=E(Ele 1t + E,et®2t + Efe %1t 4 EJe 2)=§E1€ 1 +EE23 2t +c.c.

We find that the nonlinear polarization is:
1 . . % —1i % —1
P(Z)(t) — EOX(Z)Z(Elelwlt 4+ Ezelwzt + E1€ iwqt 4+ Eze szt)Z: |
= 80)((2)% [Efe?i@rt 4 FZe2iw2t 4 DF E,el(@1@2)t 4 o Erel(@1=0)t 4 ¢ ¢ ] 4+ so)((z)% (E1E{ +E; E3)

\ / \ \ \
SFG, sum-frequency generation

SHG, second harmonic generation
OR, optical rectification

DFG, difference-frequency generation

note that the whole expression is real !



Generation of new frequency components

In the complex representation A cos(wt) —» Ae'®t | the amplitudes of various frequency components of the nonlinear
polarization are given by:

1 : 11 . 1 .
at 2wy: P(t) = Zeox(z)ElzeZ““lt +c.c.= E{EEOX(Z) EZe?t@it y c.c.} = E{P(Zwl)ezw’lt +c.c.}

1
PQRwq) = EEOX(Z)Elz amplitude of polarization at 2w; can also write: P,,, (t) = P(2wq)cos(2wt)

1 : 11 . 1 .
at 2w,:  P(t) = ZSOX(Z)EZZeZ“‘)Zt +c.c.= E{ESOX(Z) EZe?®2t ¢ c.} = E{P(sz)ez“"zt +c.c.}

1
PQRw,) = EeOX(Z)EZZ amplitude of polarization at 2w,; can also write: P, (t) = P(2w;)cos(2w,t)



Generation of new frequency components

In the complex representation A cos(wt) —» Ae'®t | the amplitudes of various frequency components of the nonlinear

polarization are given by:

1
PQ2wy) = EEOX(Z)Ef
1 or2
PCLw,) = 580)( E;

P(w; + wy) = gox PELE,

P(wy — w;) = gox PE,E;

1 1
P(0) = EEOX(Z)(ElEik +E; Ey) = 550){(2)(|E1|2 + |E2|2)

polarization amplitude for...
SHG, second harmonic generation

SHG, second harmonic generation

SFG, sum-frequency generation

DFG, difference-frequency generation

OR, optical rectification

N

(5.2)



Generation of new frequency components

Do without complex representation, simply E;(t) = E;cos(wt)

P@(t) = ggxPE*(t) = gogxPE,*cos?(wt) = eoX(Z)E12%[1 + cos(Qwt)]

_ 2) ;2
PQw,) = 550)(( )E1 amplitude of the frequency component at 2w,

P(DC)=18 @) g2 DC polarization
5 0X 1 p



Second Harmonic Generation

amplitude of the frequency component at 2w,

\

1
Amplitude PQw,) = = ¥ PE?
1 1
dyy = E)((2) > factor
— a sequence of historical convention
-> P(2w,) = godn ET

in the same way

P(2w,) = gydy E5



Generation of new frequency components

In the complex representation A cos(wt) —» Ae'®t | the amplitudes of various frequency components of the nonlinear

polarization are given by:

PQ2wq) = gydn Ef

PQ2wy) = eodn,E3

P(w; + wy) = 2eqdy E1 E

P(w; — wy) = 2eqdy E1E;

P(0) = odnr(|E1|* + |E2]%)

SHG, second harmonic generation

SHG, second harmonic generation

SFG, sum-frequency generation

DFG, difference-frequency generation

OR, optical rectification

-

\_

-

(5.2a)



Coupled -wave theory (plane waves)

Recall slowly varying envelope OE(2) iwe i
approximation (SVEA) 3 = :uOPextz _
equation (2.3) from lecture 2 z 2n

P, (2.11)

N\

2NnCEg

perturbation polarization

Now the role of perturbation polarization P,,; is played by the nonlinear polarization Py,

Assume we have 3 interacting waves  E,e!®@1t E,el®W2l [ gl®st such that w; + w, = w;
DFG W1 = W3 — W3
DFG Wy = W3 — W
SFG w3 = W1 + w-

For nonlinear polarizations P(wl) - ZEOd Bk h d=d
We can write, see (5.2a): P(w,) = 2&¢d E3E; (5.3) ere d =dy

P((,()g) = 2€0d E1E2



Coupled -wave theory

Assume that there is no absorption in the material

From (2.11) and (5.3) it follows that: dE; __ iw,d EEX (5.4a)
dz T linear diff. equations,
dE, _ iwyd . hence we are using
dz | nge E3Eq (5.4b) the complex form
% - lwgd
dz . El E2 (54C)

The three waves are travelling waves ~ E; = E;(2)e!“1t7512), F, — E,(z2)el(@2t7k22) | Fy — F3(z)el(@st~Haz)

Take for example (5.4c) While the phase of E; is changing as w3t — k3z
The phase of the righ side (~ E;E,) is changing as (w;+w,)t — (k1+ky)z = wst — (k1+k;)z
Despite of the fact that w3 = w1 + Wy, ks + ki1 + k>

ks —k,—ki=Ak#0 phase mismatch because of wave dispersion

Three waves have different phase velocities. As a result, the induced polarization at w; moves at a different velocity than the field at w5

. w3 W1t Wy
phase velocity = *

ks  kqi+ky

We will look at this so-called ‘phase matching’ problem in Lecture 8
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Coupled -wave theory

Ak=k3 _kZ_kl

dE1 lwld N - Ak
— =— E;E e~ AR
dz nq,c 352

dE2 lwzd * — Ak
22— E.E lAkz
dz n,C 371

dE lwzd

dZB —_ w3 ElEzelAkZ

As a result of this mismatch of the sum of k—vectors, the term e'2%Z should be added to (5.4):

Ak > 0 for normal-dispersion material

(5.5)

d = dNL == )((2)/2
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Coupled -wave theory

from Lecture 2:

Energy flux 1 1
(intensity): I = E(c/n)eIEI2 = Ecm~:0|E|2 = |E|? /27
Photon flux: I _ ceonlEl” _ (ﬂ ngl* n IE|?
hw 2hw 2h w w
n
introduce a new field variable : A= \/%E
such that |4|? is now proportional to the photon flux: O = %

1 w
Intensity: I = -cnglEl* = —cneo(;)IAIZ:

2 2

(5.6)

(5.7)

|4]°

2

Watts per m?

photons per m? per second

-photons per m? per sec

ce
—Oa)lAlz ~ w|A|?
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Now rewrite (5.5): E—>\/§A
n

and get:

Coupled -wave theory

@184 1ond O3 D2 4 g5 o-ibkz

nq dz nqc ni3 n, 3 2

&—dAZ — Lwyd W3 (W1 A A* —iAkz

n, dz 3A1€

2 z nZC n3 nl

w3 dAB — la)gd w1 w> A A iAkz
1/ T e

ns dz N3C Ny | Ny 1412

dA .d |wiw-ow .
——— =—l_\/z ASAEQ [Akz
dz C | ninzns

dA .d |wiwow .
—2 =—l_\/z A3A’{e IAkz
dz C | ninzns

dA .d |wiww .
TRy o

(5.8)
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Coupled-wave theory

Define : g =% /%;‘”33 g - NL coupling coefficient
% _ x —iAkz
dz lg A3A2€
dA ; i
dz
% i 1 iAkz
iz lgAlAze

This is the final form of coupled equations for 3 waves



Coupled -wave theory

Now let us find how photon fluxes at w; w, w5 are related to each other

hoton flux ~ |A|? A a2 = L aay = g+ o 494 _ 4«04
p 4] — AP =—(AA) = A —+A——=A"—+cc
From the previous Eq. (5.7)

4 | dA1__ . «  —ilkz — v L A2 = —ig AsARATe iRz 4 ¢ ¢,

1 5, Lg Asdze az "1 37241

" dA ) i a 2 _ * 1% —iAkz
AZ —dzz =—lg ASA;‘_Q IAkz — dz |A2| = —lg A3A2Ale + c.c.

dA . i d _ . * ] o * 2% —1
A% d_3 =—igA,A,etikz — —Asl?= —igALA,A1e%% + c.c.=ig Az AL A e AR 4+ ¢ c.
Z
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Manley—Rowe relation

T
602
hence — 14 2—114 2-—£A 2 o, v
dz | 1| — dz | 2| — dz | 3| (5.8) Manley—-Rowe relation ) -—-1--
6Ol
d d d ber of phot Y
same as N =—TN> = — —7N 59 n - number of photons
dz ' dz * dz > (5:9)
. I d [T I d (1 I d (1] I
since |4]* ~ — 2+ 2 ) =o, L+ 2 ) =o, - - =) =0. (5.10)
dz\wr w3 dz \ w1 w3 dz \ wi w7 '
Also, using (5.10) 4 A w, d , w, d , d , w, + w, d ; ; )
and w;tw;=ws dz (h+1p+15) wsdz > wsdz °  dz 3 ws dz ° dz

;_Z (L+1L,+13)=0 (5.11) energy conservation
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Manley—Rowe relation

These important relations (5.8- 5.11) are universal in the sense that there
may be or may be no phase matching; and also in the sense that the AT T

process can go both ways: ®,

(U1+(U2 _>(,U3 1

or

W3 > W1 + Wy

Of course this is under the assumption that there is no absorption in the material

17



