Lecture 7

Second-order $X^{(2)}$ nonlinear optical materials. Crystal classes and their symmetries. Nonlinear optical tensors. Electrooptic effect.

Anisotropic linear media

Linear susceptibility is a tensor

$$
P_{i}=\varepsilon_{0} \sum_{j \in\{x, y, z\}} \chi_{i j} E_{j} \quad \text { or } \quad\left(\begin{array}{c}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right)=\varepsilon_{0}\left(\begin{array}{ccc}
\chi_{x x} & \chi_{x y} & \chi_{x z} \\
\chi_{y x} & \chi_{y y} & \chi_{y z} \\
\chi_{z x} & \chi_{z y} & \chi_{z z}
\end{array}\right)\left(\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right)
$$

In an anisotropic medium, such as a crystal, the polarization field P is not necessarily aligned with the electric field of the light E. In a physical picture, this can be thought of as the dipoles induced in the medium by the electric field having certain preferred directions, related to the physical structure of the crystal.

In nonmagnetic and transparent materials, $\chi_{i j}=\chi_{j i}$, i.e. the χ tensor is real and symmetric.
It is possible to diagonalize the tensor by choosing the appropriate coordinate axes, leaving only $\chi_{x x}, \chi_{y y}$ and $\chi_{z z}$. This gives :

$$
\begin{aligned}
P_{x} & =\varepsilon_{0} \chi_{x x} E_{x} \\
P_{y} & =\varepsilon_{0} \chi_{y y} E_{y} \\
P_{z} & =\varepsilon_{0} \chi_{z z} E_{z}
\end{aligned}
$$

Anisotropic linear media

The refractive index is:

$$
n=\sqrt{1+\chi}
$$

hence

$$
\begin{aligned}
& n_{x x}=\sqrt{1+\chi_{x x}} \\
& n_{y y}=\sqrt{1+\chi_{y y}} \\
& n_{z z}=\sqrt{1+\chi_{z z}}
\end{aligned} \quad \text { or } \quad \varepsilon=\varepsilon_{0}\left[\begin{array}{ccc}
n_{x}^{2} & 0 & 0 \\
0 & n_{y}^{2} & 0 \\
0 & 0 & n_{z}^{2}
\end{array}\right]
$$

Waves with different polarizations will see different refractive indices and travel at different speeds.

This phenomenon is known as birefringence and occurs in some crystals such as calcite and quartz.

If $\chi_{x x}=\chi_{y y} \neq \chi_{z z}$, the crystal is known as uniaxial.
If $\chi_{x x} \neq \chi_{y y} \neq \chi_{z z}$ the crystal is called biaxial.
will come back to this in Lecture 8

Anisotropic linear media

Uniaxial crystals		$\mathrm{n}_{1}=\mathrm{n}_{2}$	n_{3}	
Material $\stackrel{\rightharpoonup}{*}$	Crystal system	$\boldsymbol{n}_{0} \stackrel{\rightharpoonup}{*}$	$\boldsymbol{n}_{\mathrm{e}} \stackrel{\rightharpoonup}{\boldsymbol{v}}$	$\Delta n \leqslant$
barium borate $\mathrm{BaB}_{2} \mathrm{O}_{4}$	Trigonal	1.6776	1.5534	-0.1242
beryl $\mathrm{Be}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{6}$	Hexagonal	1.602	1.557	-0.045
calcite CaCO_{3}	Trigonal	1.658	1.486	-0.172
ice $\mathrm{H}_{2} \mathrm{O}$	Hexagonal	1.309	1.313	+0.004
lithium niobate LiNbO_{3}	Trigonal	2.272	2.187	-0.085
magnesium fluoride MgF_{2}	Tetragonal	1.380	1.385	+0.006
quartz SiO_{2}	Trigonal	1.544	1.553	+0.009
ruby $\mathrm{Al}_{2} \mathrm{O}_{3}$	Trigonal	1.770	1.762	-0.008
rutile TiO_{2}	Tetragonal	2.616	2.903	+0.287
sapphire $\mathrm{Al}_{2} \mathrm{O}_{3}$	Trigonal	1.768	1.760	-0.008
silicon carbide SiC	Hexagonal	2.647	2.693	+0.046
tourmaline (complex silicate)	Trigonal	1.669	1.638	-0.031
zircon, high ZrSiO_{4}	Tetragonal	1.960	2.015	+0.055
zircon, low ZrSiO_{4}	Tetragonal	1.920	1.967	+0.047

Biaxial crystals		$\mathrm{n}_{1} \quad \mathrm{n}_{2}$		n_{3}
Material $\hat{\rightharpoonup}$	Crystal system	$\boldsymbol{n}_{\boldsymbol{\alpha}} \stackrel{\rightharpoonup}{*}$	$n_{\beta} \stackrel{\rightharpoonup}{*}$	$n_{\gamma} \hat{*}$
borax $\mathrm{Na}_{2}\left(\mathrm{~B}_{4} \mathrm{O}_{5}\right)(\mathrm{OH})_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$	Monoclinic	1.447	1.469	1.472
epsom salt $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	Monoclinic	1.433	1.455	1.461
mica, biotite $\mathrm{K}(\mathrm{Mg}, \mathrm{Fe})_{3}\left(\mathrm{AlSi}_{3} \mathrm{O}_{10}\right)(\mathrm{F}, \mathrm{OH})_{2}$	Monoclinic	1.595	1.640	1.640
mica, muscovite $\mathrm{KAl}_{2}\left(\mathrm{AlSi}_{3} \mathrm{O}_{10}\right)$ $(\mathrm{F}, \mathrm{OH})_{2}$	Monoclinic	1.563	1.596	1.601
olivine ($\mathrm{Mg}, \mathrm{Fe})_{2} \mathrm{SiO}_{4}$	Orthorhombic	1.640	1.660	1.680
perovskite CaTiO_{3}	Orthorhombic	2.300	2.340	2.380
topaz $\mathrm{Al}_{2} \mathrm{SiO}_{4}(\mathrm{~F}, \mathrm{OH})_{2}$	Orthorhombic	1.618	1.620	1.627
ulexite $\mathrm{NaCaB}_{5} \mathrm{O}_{6}(\mathrm{OH})_{6} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	Triclinic	1.490	1.510	1.520

Nonlinear Susceptibility Tensor

Nonlinear susceptibility is a 3 -rd rank tensor $\quad(3 \times 3 \times 3$ tensor $) \quad \chi_{i j k}^{(2)}$

$$
\begin{equation*}
P_{i}=\epsilon_{0} \sum_{j, k} \chi_{i j k} E_{j} E_{k} \tag{7.1}
\end{equation*}
$$

When all of the optical frequencies are detuned from the resonance frequencies of the optical medium the nonlinear susceptibility tensor $\quad \chi_{i j k}^{(2)} \quad$ has full permutation symmetry:

$$
\chi_{i j k}=\chi_{i k j}=\chi_{j i k}=\chi_{j k i}=\chi_{k i j}=\chi_{k j i}
$$

Kleinman's full permutation symmetry condition
\ldots and does not actually depend of frequencies that participate, so instead of writing $\quad \chi_{i j k}^{(2)}\left(\omega_{3}=\omega_{1}+\omega_{2}, \omega_{1}, \omega_{2}\right)$ we write simply $\chi_{i j k}^{(2)}$

Full permutation symmetry can be deduced from a consideration of the field energy density within a nonlinear medium (see Boyd or Stegeman books).

And also from quantum mechanics !

Nonlinear Susceptibility Tensor

Consider mutual interaction of three waves at ω_{1}, ω_{2}, and $\omega_{3}=\omega_{1}+\omega_{2}$

Assume E is the total field vector

$$
\boldsymbol{E}=\left[\begin{array}{l}
E_{x} \tag{7.2}\\
E_{y} \\
E_{z}
\end{array}\right]=\left[\begin{array}{l}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right]=\left[\begin{array}{l}
E_{1, \omega_{1}} \cos \left(\omega_{1} t\right)+E_{1, \omega_{2}} \cos \left(\omega_{2} t\right)+E_{1, \omega_{3}} \cos \left(\omega_{3} t\right) \\
E_{2, \omega_{1}} \cos \left(\omega_{2} t\right)+E_{2, \omega_{2}} \cos \left(\omega_{2} t\right)+E_{2, \omega_{3}} \cos \left(\omega_{3} t\right) \\
E_{3, \omega_{1}} \cos \left(\omega_{3} t\right)+E_{2, \omega_{2}} \cos \left(\omega_{2} t\right)+E_{3, \omega_{3}} \cos \left(\omega_{3} t\right)
\end{array}\right]
$$

$$
\text { then } \quad P_{i}=\epsilon_{0} \sum_{j, k} \chi_{i j k} E_{j} E_{k} \quad i, j, k=1,2,3(=x, y, z)
$$

For example, x-component of the nonlinear polarization \boldsymbol{P} is:

X

$$
\begin{aligned}
& P_{1}=\epsilon_{0} \sum_{j, k} \chi_{1 j k} E_{j} E_{k}=\epsilon_{0}\left\{\chi_{111} E_{1} E_{1}\right. \\
&+\chi_{112} E_{1} E_{2} \\
&+\chi_{1121} E_{1} E_{3} E_{1} \\
& \underline{\chi_{122} E_{2} E_{2}}+\chi_{123} E_{2} E_{3}
\end{aligned}+
$$

y

$$
\begin{aligned}
& P_{2}=\epsilon_{0} \sum_{j, k} \chi_{2 j k} E_{j} E_{k}=\ldots \\
& P_{3}=\epsilon_{0} \sum_{j, k} \chi_{3 j k} E_{j} E_{k}=\ldots
\end{aligned}
$$

Nonlinear Susceptibility Tensor

Now introduce the tensor:

$$
d_{i j k}=\frac{1}{2} \chi_{i j k}^{(2)}
$$

(historical convention!)
and write:
$P_{1}=2 \epsilon_{0}$
$P_{2}=2 \epsilon_{0}\left(d_{211} E_{1} E_{1} E_{1}+d_{122} E_{2} E_{2}+d_{133} E_{3} E_{2} E_{2}+2 d_{123} E_{2} E_{3}+2 d_{113} E_{1} E_{3} E_{3}+2 d_{223} E_{2} E_{3}+2 d_{213} E_{1} E_{3}+2 d_{212} E_{1} E_{2}\right)$
$P_{3}=2 \epsilon_{0}\left(d_{311} E_{1} E_{1}+d_{322} E_{2} E_{2}+d_{333} E_{3} E_{3}+2 d_{323} E_{2} E_{3}+2 d_{313} E_{1} E_{3}+2 d_{312} E_{1} E_{2}\right)$

$$
d_{112}+d_{121}=2 d_{112}
$$

Matrix with 6×3 components

Reduce 3D tensor to 2D matrix

$$
d_{i l}=\left[\begin{array}{llllll}
d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\
d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\
d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36}
\end{array}\right] .
$$

Second-order susceptibility described using contracted notation

Nonlinear Susceptibility Tensor

the way to find nonlinear polarizations in 3D case using contracted notation

$$
\left[\begin{array}{l}
P_{x} \tag{7.3}\\
P_{y} \\
P_{z}
\end{array}\right]=2 \epsilon_{0}\left[\begin{array}{llllll}
d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\
d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\
d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36}
\end{array}\right]\left[\begin{array}{c}
E_{x}^{2} \\
E_{y}^{2} \\
E_{z}^{2} \\
2 E_{y} E_{z} \\
2 E_{x} E_{z} \\
2 E_{x} E_{y}
\end{array}\right]
$$

Imagine we have only only x-components for \boldsymbol{P} and \boldsymbol{E} - get familiar (see 5.1 with $\chi^{(2)}=2 d_{N L}$)

$$
\begin{equation*}
P(t)=2 \varepsilon_{0} d_{N L} E^{2}(t) \tag{7.4}
\end{equation*}
$$

Nonlinear Susceptibility Tensor

By further applying Kleinman symmetry, we find that $d_{i l}$ matrix has only 10 independent elements

$$
d_{i l}=\left[\begin{array}{llllll}
d_{11} & d_{12} & d_{13} & \underline{d_{14}} & d_{15} & d_{16} \\
d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\
d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & \underline{d_{36}}
\end{array}\right] .
$$

for example: d_{14} is d_{123}			
but d_{25} is d_{213}	$=d_{123}$		
and d_{36} is d_{312}	$=d_{123}$	\quad	$\rightarrow \quad d_{14}=d_{25}=d_{36} \quad$ etc.
:---			

$$
d_{i l}=\left[\begin{array}{llllll}
d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\
d_{16} & d_{22} & d_{23} & d_{24} & d_{14} & d_{12} \\
d_{15} & d_{24} & d_{33} & d_{23} & d_{13} & d_{14}
\end{array}\right]
$$

$$
d_{11} d_{22} d_{33} d_{12} d_{13} d_{14} d_{15} d_{16} d_{23} d_{24}
$$

Nonlinear Susceptibility Tensor

Only 10 independent elements

Nonlinear Susceptibility Tensor

Spatial symmetries of crystals further reduce the amount of independent tensor elements

Nonlinear Susceptibility Tensor

Yariv's Quantum electronics 3rd Edition pages 381-382

table 16.1. The Form of the Nonlinear Optical Tensor d_{8} as Defined

Nonlinear Susceptibility Tensor

GaAs	classes	\cdot	\cdot	\cdot	.	.	class 432 (all elements GaP
$\overline{4} 3 \mathrm{~m}$		
ZnSe	and 23	

Nonlinear Susceptibility Tensor

point group mm2 KTP $\left(\mathrm{KTiO}_{2} \mathrm{PO}_{4}\right)$ crystal
This crystal class is invariant under 180° rotations around z-axis and mirror images on the planes m 1 and m 2 , that contain the rotation axis
tensor elements transform just like the coordinates

$$
\begin{aligned}
m_{1} & :(x, y, z) \longrightarrow(-x, y, z) \\
m_{2} & :(x, y, z) \longrightarrow(x,-y, z), \\
2 & :(x, y, z) \longrightarrow(-x,-y, z)
\end{aligned}
$$

Nonlinear Susceptibility Tensor

KTP $\left(\mathrm{KTiO}_{2} \mathrm{PO}_{4}\right)$ crystal

$\left(d_{11}\right)$	$\left(d_{12}\right)$	$\left(d_{13}\right.$	$\left(d_{14}\right)$	$\left(d_{16}\right.$	$\left(d_{16}\right.$
d_{16}	$\left(d_{22}\right.$	$\left(d_{22}\right)$			
d_{15}	d_{24}	d_{14}	d_{12}		
d_{24}	$\left(d_{33}\right.$	d_{23}	d_{13}	d_{14}.	

ortho-
rhombic

$$
C_{2 \nu} \| m m 2
$$

$\mathrm{KTP}, \mathrm{KNbO}_{3}$ $\mathrm{BaNaNb}_{5} \mathrm{O}_{15}$ $\mathrm{LiB}_{3} \mathrm{O}_{3}$ (LBO)

Nonlinear Susceptibility Tensor

Crystal of class 3 m (e.g. Lithium Niobate, LiNbO_{3})

$$
\begin{gathered}
d_{i l}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & d_{31} & -d_{22} \\
\hdashline d_{22} & d_{22} & 0 & d_{31} & 0 & 0 \\
d_{31} & d_{31} & d_{33} & 0 & 0 & 0
\end{array}\right] \\
\\
\\
\\
\text { only } d_{22}, d_{31} \text { and } d_{33}
\end{gathered}
$$

$\mathrm{LiNbO}_{3}, \mathrm{LiTaO}_{2}$ $\mathrm{BaB}_{2} \mathrm{O}_{2}(\mathrm{BBO})$
other crystals of this class

Physical origin of off-diagonal elements in $\mathrm{d}_{\mathrm{ijk}}$ tensor

GaAs crystal

Classes $\overline{4} 3 \mathrm{~m}$ and 23
$(\because: \therefore:)_{(1)}^{\text {Clases }}$ 43m and \quad anAs

Physical origin of off-diagonal elements in $\mathrm{d}_{\mathrm{ijk}}$ tensor

after Stegeman NLO book
KDP crystal

Tetragonal (continued)
$2 \left\lvert\, x_{1}\left(\begin{array}{llll}\text { Class } & \overline{4} 2 m & \\ * & * & * & * \\ * & * & * & * \\ * & *\end{array}\right)(2)\right.$
KDP

Nonlinear Susceptibility Tensor

GaAs

Crystal of class $\overline{4} 3 m$ (e.g. Gallium Arsenide, GaAs)

- As or S

$$
\text { only } d_{14}
$$

Nonlinear Susceptibility Tensor

$$
\begin{gather*}
\text { GaAs } \tag{7.4}\\
\hat{P}^{(2)}=2 \epsilon_{0}\left(\begin{array}{cccccc}
0 & 0 & 0 & d_{14} & 0 & 0 \\
0 & 0 & 0 & 0 & d_{14} & 0 \\
0 & 0 & 0 & 0 & 0 & d_{14}
\end{array}\right)\left(\begin{array}{l}
\hat{E}_{x} \hat{E}_{x} \\
\hat{E}_{y} \hat{E}_{y} \\
\hat{E}_{z} \hat{E}_{z} \\
2 \hat{E}_{y} \hat{E}_{z} \\
2 \hat{E}_{z} \hat{E}_{x} \\
2 \hat{E}_{x} \hat{E}_{y}
\end{array}\right)
\end{gather*}
$$

Nonlinear Susceptibility Tensor

How to calculate effective nonlinearity ?
NL polarization
$\left[\begin{array}{c}P_{x}(t) \\ P_{y}(t) \\ P_{z}(t)\end{array}\right]=2 \epsilon_{0}\left[\begin{array}{lllll}d_{11} & d_{12} & d_{13} & d_{14} & d_{15} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{24} & d_{25} & d_{26} \\ d_{34} & d_{35} & d_{36}\end{array}\right]\left[\begin{array}{l}E_{x}^{2}(t) \\ E_{y}^{2}(t) \\ E_{z}^{2}(t) \\ 2 E_{y}(t) E_{z}(t) \\ 2 E_{x}(t) E_{z}(t) \\ 2 E_{x}(t) E_{y}(t)\end{array}\right]$

1) $\mathrm{LiNbO}_{3} \mathrm{~d}_{33} \neq 0$

The pump wave $E(t)$ is polarized along z-axis

$$
\begin{aligned}
& {\left[\begin{array}{l}
P_{x}(t) \\
P_{y}(t) \\
P_{z}(t)
\end{array}\right]=2 \epsilon_{0}\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & -\frac{d_{31}}{-d_{22}} \\
\left(d_{22}\right. & d_{22} \\
\left(d_{31}\right) & 0 & d_{31} & 0 & 0 \\
\left(d_{31}\right) & d_{33} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
E_{z}^{2}(t) \\
0 \\
0 \\
0
\end{array}\right]=2 \epsilon_{0} d_{33}\left[\begin{array}{c}
0 \\
0 \\
E_{z}^{2}(t)
\end{array}\right]} \\
& P_{z}(t)=2 \epsilon_{0} d_{33} E_{z}^{2}(t) \\
& \text { similar to scalar equation with } d_{e f f}=d_{33}
\end{aligned}
$$

Nonlinear Susceptibility Tensor

input field

$$
E_{z}(t)=\operatorname{Re}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}\right)=\frac{1}{2}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}+\text { c. c. }\right)
$$

Need to find z-component of $P\left(\omega_{3}\right)=P\left(\omega_{1}+\omega_{2}\right)=\operatorname{Re}\left\{P\left(\omega_{3}\right) e^{i\left(\omega_{1}+\omega_{2}\right) t}\right\}=\frac{1}{2}\left(P e^{i\left(\omega_{1}+\omega_{2}\right) t}+P^{*} e^{-i\left(\omega_{1}+\omega_{2}\right) t}\right)$

$$
\begin{gathered}
P_{z}^{(N L)}(t)=2 \epsilon_{0} d_{33} E_{Z}^{2}=2 \epsilon_{0} d_{33} \frac{1}{4}\left(E_{1, z} e^{i \omega_{1} t}+E_{2, z} e^{i \omega_{2} t}+\text { c.c. }\right)^{2}=\cdots \\
=2 \epsilon_{0} d_{33} \frac{1}{4}\left(E_{1, z}^{2} e^{2 i \omega_{1} t}+E_{2, z}^{2} e^{2 i \omega_{2} t}+2 E_{1, z} E_{2, z} e^{i\left(\omega_{1}+\omega_{2}\right) t}+2 E_{1, z} E_{2, z}^{*} e^{i\left(\omega_{1}-\omega_{2}\right) t}+\text { c. c. }\right)+2 \epsilon_{0} d_{33} \frac{1}{2}\left(E_{1, z} E_{1, z}^{*}+E_{2, z} E_{2, z}^{*}\right)
\end{gathered}
$$

$$
\text { for SFG term: } \quad P\left(\omega_{3}\right)=P\left(\omega_{1}+\omega_{2}\right)-\text { pick only components with } \pm\left(\omega_{1}+\omega_{2}\right)
$$

at ω_{3}

$$
P_{z}^{(N L)}(t)=2 \epsilon_{0} d_{33} \frac{1}{4}\left(2 E_{1, z} E_{2, z} e^{i\left(\omega_{1}+\omega_{2}\right) t}+c . c .\right)=\epsilon_{0} 2 d_{33}\left(\frac{1}{2} E_{1, z} E_{2, z} e^{i\left(\omega_{1}+\omega_{2}\right) t}+c . c .\right)
$$

$$
P_{z}\left(\omega_{3}\right)=\epsilon_{0} 2 d_{33} E_{1, z} E_{2, z} \quad \text { Amplitude (Fourier component) of polarization at sum frequency }
$$

$$
P(t)=P_{z}\left(\omega_{3}\right) \cos \left(\omega_{3} \mathrm{t}\right)
$$

Nonlinear Susceptibility Tensor

once you know $d_{e f f}$, you can treat fields as scalars
thus

$$
\begin{aligned}
& P\left(\omega_{1}+\omega_{2}\right)=2 \epsilon_{0} d_{33} E_{1} E_{2} \\
& P\left(2 \omega_{1}\right)=\epsilon_{0} d_{33} E_{1}^{2} \\
& P\left(2 \omega_{2}\right)=\epsilon_{0} d_{33} E_{2}^{2}
\end{aligned}
$$

- by analogy with the scalar case from previous lectures

Nonlinear Susceptibility Tensor

2) Effective nonlinearity, GaAs

for input fields
along XY direction

$$
\boldsymbol{E}(t)=\boldsymbol{E}_{\mathbf{1}} e^{i \omega_{1} t}+\boldsymbol{E}_{\mathbf{2}} e^{i \omega_{2} t}
$$

$$
\mathrm{SFG} \omega_{3}=\omega_{1}+\omega_{2}
$$

Crystal of class $\overline{4} 3 m$ (e.g. Gallium Arsenide, GaAs)

Need to find $\boldsymbol{P}\left(\omega_{3}\right)$

$$
\begin{aligned}
& E_{x}=\operatorname{Re}\left\{\frac{1}{\sqrt{2}}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}\right)\right\}=\frac{1}{2 \sqrt{2}}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}+c . c\right) \\
& E_{y}=\operatorname{Re}\left\{\frac{1}{\sqrt{2}}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}\right)\right\}=\frac{1}{2 \sqrt{2}}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}+c . c\right)
\end{aligned}
$$

$$
\boldsymbol{P}_{N L}(t)=P_{z}(t)=2 \epsilon_{0} d_{14}\left(2 E_{x} E_{y}\right)=4 \epsilon_{0} d_{14} \frac{1}{2} \frac{1}{4}\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}+c . c .\right)^{2}
$$

beam k-vector: goes into the page (so-called 110 direction)
\rightarrow pick terms with $\omega_{1}+\omega_{2} \quad P_{N L}\left(t, \omega_{3}\right)=\epsilon_{0} d_{14} \frac{1}{2}\left(2 E_{1} E_{2} e^{i\left(\omega_{1}+\omega_{2}\right) t}+c . c.\right)=\epsilon_{0} 2 d_{14}\left[\frac{1}{2}\left(E_{1} E_{2} e^{i\left(\omega_{1}+\omega_{2}\right) t}+c . c.\right)\right]$
for SFG $\quad P\left(\omega_{1}+\omega_{2}\right)=2 \epsilon_{0} d_{14} E_{1} E_{2} \quad \rightarrow \quad d_{e f f}=d_{14}$

Can treat fields as scalars keeping in mind that E_{1} E_{2} are in $x y$ and E_{3} is in z-direction.

Nonlinear Susceptibility Tensor

Because of the off-diagonal tensor elements, we can generate SFG with the output polarization perpendicular to the input polarizations

Electrooptic effect

The electrooptic effect (Pockels effect) is the change in refractive index of a material induced by the presence of a static (or low-frequency) electric field.

Linear anisotropic medium:

$$
D_{i}=\epsilon_{0} \sum_{j} \epsilon_{i j} E_{j}
$$

the dielectric constant is a second-rank tensor

$$
\left[\begin{array}{c}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right]=\epsilon_{0}\left[\begin{array}{ccc}
\epsilon_{x x} & \epsilon_{x y} & \epsilon_{x z} \\
\epsilon_{y x} & \epsilon_{y y} & \epsilon_{y z} \\
\epsilon_{z x} & \epsilon_{z y} & \epsilon_{z z}
\end{array}\right]\left[\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right] .
$$

Dielectric tensor is represented as a diagonal matrix (by a proper choice of the coordinate system).

$$
\left[\begin{array}{c}
D_{X} \\
D_{Y} \\
D_{Z}
\end{array}\right]=\epsilon_{0}\left[\begin{array}{ccc}
\epsilon_{X X} & 0 & 0 \\
0 & \epsilon_{Y Y} & 0 \\
0 & 0 & \epsilon_{Z Z}
\end{array}\right]\left[\begin{array}{c}
E_{X} \\
E_{Y} \\
E_{Z}
\end{array}\right] . \quad \begin{aligned}
& \text { in the principal } \\
& \text { dielectric axes }
\end{aligned}
$$

First-order electrooptic effect in anisotropic crystals

First-order electrooptic effect in anisotropic crystals

Uniaxial crystal: $\quad n_{1}=n_{2}=n_{0} ; \quad n_{3}=n_{e}$

$$
\frac{x^{2}}{n_{o}^{2}}+\frac{y^{2}}{n_{o}^{2}}+\frac{z^{2}}{n_{e}^{2}}=1
$$

direction of propagation beam \boldsymbol{k}-vector
beam k-vector

two allowed directions of polarization with two distinct n coefficients
'positive' crystal
Uniaxial crystals: The indicatrix is an ellipsoid of revolution.

For the direction of polarization perpendicular to the optic axis, known as the ordinary direction, the index is independent of the direction of propagation.

For the other direction of polarization, known as the extraordinary direction, the index changes between the value of the ordinary index n_{0}, when the wave normal is parallel to the optic axis (z) and the extraordinary index n_{e}, when the wave normal is perpendicular to the optic axis.

The two beams of light so produced are often referred to as o-rays and e-rays, respectively.

When the wave normal is in a direction θ to the optic axis, the index is given by:
perpendicular to the plane of the figure
in the plane of the figure

$$
n=n_{o}
$$

$$
\frac{1}{n(\theta)^{2}}=\frac{\cos (\theta)^{2}}{n_{o}^{2}}+\frac{\sin (\theta)^{2}}{n_{e}^{2}}
$$

$$
\rightarrow \quad n(\theta)=\frac{n_{\mathrm{e}} n_{\mathrm{o}}}{\left(n_{\mathrm{o}}^{2} \sin ^{2} \theta+n_{\mathrm{e}}^{2} \cos ^{2} \theta\right)^{1 / 2}}
$$

First-order electrooptic effect in anisotropic crystals

Uniaxial crystal: $n_{1}=n_{2}=n_{0} ; \quad n_{3}=n_{e}$

$$
\frac{x^{2}}{n_{o}^{2}}+\frac{y^{2}}{n_{o}^{2}}+\frac{z^{2}}{n_{e}^{2}}=1
$$

two allowed directions of polarization with two distinct n coefficients

Uniaxial crystals: The indicatrix is an ellipsoid of revolution.

For the direction of polarization perpendicular to the optic axis, known as the ordinary direction, the index is independent of the direction of propagation.

For the other direction of polarization, known as the extraordinary direction, the index changes between the value of the ordinary index n_{0}, when the wave normal is parallel to the optic axis (z) and the extraordinary index n_{e}, when the wave normal is perpendicular to the optic axis.

The two beams of light so produced are often referred to as o-rays and e-rays, respectively.

When the wave normal is in a direction θ to the optic axis, the index is given by:
perpendicular to the plane of the figure
in the plane of the figure

$$
n_{e}<n_{o}
$$

$$
n=n_{o}
$$

$$
\frac{1}{n(\theta)^{2}}=\frac{\cos (\theta)^{2}}{n_{o}^{2}}+\frac{\sin (\theta)^{2}}{n_{e}^{2}}
$$

$$
\rightarrow \quad n(\theta)=\frac{n_{\mathrm{e}} n_{\mathrm{o}}}{\left(n_{\mathrm{o}}^{2} \sin ^{2} \theta+n_{\mathrm{e}}^{2} \cos ^{2} \theta\right)^{1 / 2}}
$$

First-order electrooptic effect in anisotropic crystals

the index ellipsoid

General case for the the index ellipsoid

$$
\begin{aligned}
& \left(\frac{1}{n^{2}}\right)_{1} x^{2}+\left(\frac{1}{n^{2}}\right)_{2} y^{2}+\left(\frac{1}{n^{2}}\right)_{3} z^{2}+2\left(\frac{1}{n^{2}}\right)_{4} y z \\
& \quad+2\left(\frac{1}{n^{2}}\right)_{5} x z+2\left(\frac{1}{n^{2}}\right)_{6} x y=1 .
\end{aligned}
$$

$$
1 \quad \text { for } i j=11
$$

$$
2 \text { for } i j=22
$$

$$
3 \text { for } i j=33 \text {, }
$$

$$
4 \text { for } i j=23 \text { or } 32
$$

$$
5 \text { for } i j=13 \text { or } 31
$$

$$
6 \text { for } i j=12 \text { or } 21
$$

First-order electrooptic effect in anisotropic crystals

The essence of linear electrooptic effect

$$
\begin{gathered}
\Delta\left(\frac{1}{n^{2}}\right)_{i}=\sum_{j} r_{i j} E_{j}, \\
\text { or }
\end{gathered}
$$

$$
\left[\begin{array}{l}
\Delta\left(1 / n^{2}\right)_{1} \\
\Delta\left(1 / n^{2}\right)_{2} \\
\Delta\left(1 / n^{2}\right)_{3} \\
\Delta\left(1 / n^{2}\right)_{4} \\
\Delta\left(1 / n^{2}\right)_{5} \\
\Delta\left(1 / n^{2}\right)_{6}
\end{array}\right]=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33} \\
r_{41} & r_{42} & r_{43} \\
r_{51} & r_{52} & r_{53} \\
r_{61} & r_{62} & r_{63}
\end{array}\right]\left[\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]
$$

First-order electrooptic effect in anisotropic crystals

KDP

Electrooptic effect and NLO effects are present in the same classes of crystals

Electrooptic modulator, KDP
Apply field along z-axis

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
r_{41} & 0 & 0 \\
0 & r_{41} & 0 \\
0 & 0 & r_{63}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right] \longrightarrow \frac{x^{2}}{n_{0}^{2}}+\frac{y^{2}}{n_{0}^{2}}+2 x y r_{63} E_{z}=1
$$

This causes (via r_{63}) induced index change in xy plane

$$
\text { rotate } x y \text { plane by } 45^{\circ} \text { and get: } \quad \frac{x^{2}}{n_{x \prime}^{2}}+\frac{y^{2}}{n_{y^{\prime}}^{2}}=1
$$

$$
\begin{aligned}
& n_{x^{\prime}}=n_{0}-\frac{1}{2} n_{0}^{3} r_{63} E_{z}, \\
& n_{y_{\prime}}=n_{0}+\frac{1}{2} n_{0}^{3} r_{63} E_{z} .
\end{aligned}
$$

First-order electrooptic effect in anisotropic crystals

Electrooptic modulator, KDP
(a)

(b)

Evolution of the vertical polarization originally sent to the modulator

Half-wave voltage \sim kV range

$$
V_{\lambda / 2}=\frac{\pi c}{\omega n_{0}^{3} r_{63}}
$$

First-order electrooptic effect in anisotropic crystals

Electrooptic modulator, lithium niobate LiNbO_{3}
NLO tensor

$$
r_{i j}=\left[\begin{array}{ccc}
0 & -r_{22} & r_{13} \\
0 & r_{22} & r_{13} \\
0 & 0 & r_{33} \\
0 & r_{42} & 0 \\
r_{42} & 0 & 0 \\
r_{22} & 0 & 0
\end{array}\right] \quad\left[\begin{array}{|c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]
$$

Apply field along x-axis (transverse effect)
This causes (via r_{22}) induced index change in xy plane

Electrooptic effect vs NLO effect

Let us now have another look at this phenomenon.
Before we saw that we can generate SFG with the output polarization perpendicular to the input polarizations.

SFG $\quad \omega_{3}=\omega_{1}+\omega_{2}$

EO $\omega=0+\omega$
may be orthogonal polarizations

$$
\omega_{1} \rightarrow 0, \quad \omega_{3} \rightarrow \omega_{2}
$$

The electrooptic effect can be seen as a frequency-mixing interaction (SFG or DFG) between the incident radiation and an externally applied DC voltage.

Connection between electrooptic and NLO coefficients

$$
E(t)=E_{0}+E_{\omega} \cos (\omega t)
$$

1) From NLO point of view

$$
\begin{aligned}
& P(t)=\varepsilon_{0} \chi^{(2)} E^{2}(t)=\varepsilon_{0} 2 d_{N L} E^{2}(t)=\varepsilon_{0} 2 d_{N L}\left(E_{0}+E_{\omega} \cos (\omega t)\right)^{2} \\
& =\varepsilon_{0} 2 d_{N L}(E_{0}^{2}+\underbrace{2 E_{0} E_{\omega} \cos (\omega t)}+\left[E_{\omega} \cos (\omega t)\right] 2)
\end{aligned}
$$

$$
P_{\omega}(t)=\varepsilon_{0} 4 d_{N L} E_{0} E_{\omega} \cos (\omega t) ; \text { but from } \quad P=\varepsilon_{0} \chi E \rightarrow P_{\omega}(t)=\varepsilon_{0} \Delta \chi E_{\omega} \cos (\omega t) ; \quad \rightarrow \Delta \chi=4 d_{N L} E_{0}
$$

$$
\text { also } \quad \chi=n^{2}-1 \longrightarrow \Delta \chi=2 n \Delta n
$$

thus

$$
4 d_{N L} E_{0}=2 n \Delta n
$$

$$
\Delta n=\frac{2 d_{N L} E_{0}}{n}
$$

2) From EO point of view

$$
\left.\begin{array}{rl}
\Delta\left(\frac{1}{n^{2}}\right)=r_{E O} E_{0} & \longrightarrow\left(-\frac{2}{n^{3}}\right) \Delta n=r_{E O} E_{0}
\end{array} \Delta n=-\frac{n^{3}}{2} r_{E O} E_{0}\right) \quad \underset{\substack{\text { tensor form }}}{ } \quad d_{i j}=-\frac{n^{4}}{4} r_{j i}
$$

